
Nick Lecrenski

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Silverlight™ 4
Problem - Design - Solution

Lecrenski

 $49.99 USA
 $59.99 CANWeb Development/ASP.NET

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

Silverlight 4 boasts long-awaited features that conquer writing a
Rich Internet Application. Using new line-of-business features in
this book, you create a web application that’s more responsive than
a traditional ASP.NET web site. Leveraging new features and the
improved Silverlight Toolkit, in each chapter you’ll work through
the problem statement, design analysis, and solution implementation.

Silverlight 4: Problem–Design–Solution:

• Explains how to determine functional requirements for your site

• Details the latest features, such as charting, enhanced data entry
controls, navigation framework, and element to element binding

• Covers the new Silverlight Toolkit featuring themes, charting, and
layout management

• Uses the new .NET RIA Services for your middle tier and data access layers

• Utilizes existing Silverlight ASP.NET membership, authentication,
and profile services

• Illustrates adding social networking to the application using a
Silverlight based MySpace application

• Addresses generating revenue with Pay-Per-Click advertisements
from Google AdSense™ and recurring monthly subscriptions using
the PayPal® developer API

• Shows how to leverage the ASP.NET AJAX Control Toolkit to
incorporate HTML content into a Silverlight application

• Includes step-by-step deployment instructions to host the site
with a real shared hosted provider, Discount ASP.NET

Nick Lecrenski is the founder and lead developer of MyFitnessJournal.com,
a popular fitness tracking web site developed entirely in Silverlight.

Wrox Problem – Design – Solution references give you solid, workable solutions
to real-world development problems. Each chapter is devoted to a different
scenario, analyzing every problem, examining relevant design issues, and
implementing the ideal solution.

Create a fully functional
application using Silverlight 4

Problem
Design

Solution
Silverlight

™ 4

www.free-eboooks-download.org

Related Wrox Books
ASP.NET MVC 1.0 Test Driven Development Problem – Design – Solution
ISBN: 978-0-470-44762-8
A hands-on guide to creating a complete ASP.NET site using Test Driven Development methods. Shows how ASP.NET MVC is well
suited to TDD and testability. Covers the complete lifecycle including design, testing, deployment, beta releases, refactoring, and
tool and framework selection.

ASP.NET MVC 1.0 Website Programming Problem – Design – Solution
ISBN: 978-0-470-41095-0
A hands-on guide to creating ASP.NET websites using MVC. The book solves some of the most common problems that programmers
run into when creating their first application or when trying to upgrade a current application to this new technology, and demonstrates
each concept while building TheBeerHouse application.

Beginning ASP.NET MVC 1.0
ISBN: 978-0-470-43399-7
This book is a great choice for those who already have ASP.NET knowledge and need to grasp the new concepts of ASP.NET MVC.
Readers will learn about Test-Driven Development and unit testing, the principles of the MVC pattern and its role in TDD, how to
implement the pattern and how to move from traditional ASP.NET webforms to ASP.NET MVC. The book also includes detailed
case studies that can be applied in real world situations.

Professional ASP.NET 3.5 AJAX
ISBN: 978-0-470-39217-1
This book is aimed at experienced ASP.NET developers looking to add AJAX to their applications, and experienced Web developers
who want to move to using ASP.NET and AJAX together.

Professional ASP.NET 4: in C# and VB
ISBN: 978-0-470-50220-4
Written by three highly recognized and regarded ASP.NET experts, this book provides all-encompassing coverage on ASP.NET 4 and
offers a unique approach of featuring examples in both C# and VB, as is the incomparable coverage of core ASP.NET. After a fast-
paced refresher on essentials such as server controls, the book delves into expert coverage of all the latest capabilities of ASP.NET 4.
You’ll learn site navigation, personalization, membership, role management, security, and more.

Professional ASP.NET MVC 1.0
ISBN: 978-0-470-38461-9
This book begins with you working along as Scott Guthrie builds a complete ASP.NET MVC reference application, NerdDinner.com.
He begins by starting a new project and incrementally adding functionality and features. Along the way you’ll cover how to create
a database, build a model layer with business rule validations, implement listing/details data browsing, provide CRUD (Create,
Update, Delete) data form entry support, reuse UI using master pages and partials, secure the application using authentication and
authorization, and implement automated unit testing. From there, the bulk of the rest of the book goes into the ways that MVC is
different from ASP.NET Web Forms, exploring the structure of a standard MVC application and see what you get out of the box. The
last third of the book focuses entirely on advanced techniques and extending the framework.

Silverlight 3 Programmer’s Reference
ISBN: 978-0-470-38540-1
This valuable reference—in full color—explains this release of Silverlight 3 which makes the development of powerful Rich
Interactive Applications (RIAs) achievable for everyone. Packed with examples and written by a highly-seasoned team of
developers and designers, this book guides you through the languages, tools, and techniques that are used to build applications
on the Silverlight 3 platform.

WPF Programmer’s Reference: Windows Presentation Foundation with C# 2010 and .NET 4
ISBN: 978-0-470-47722-9
Written by a leading expert on Microsoft graphics programming, this richly illustrated book provides an introduction to WPF
development and explains fundamental WPF concepts.

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

www.free-eboooks-download.org

http://www.wrox.com

Silverlight™ 4
Problem – DeSign – Solution

introDuction .xv

chaPter 1 FitnessTrackerPlus . 1

chaPter 2 Prepare to Be Popular .19

chaPter 3 Sign Me Up . 87

chaPter 4 Welcome Home . 141

chaPter 5 One More Slice Can’t Hurt . 193

chaPter 6 Time to Hit the Gym . 233

chaPter 7 Am I Working Hard Enough? . 279

chaPter 8 Unfinished Business . 313

chaPter 9 Sharing Your Success . 349

chaPter 10 Social Networking . 387

chaPter 11 This Site Doesn’t Run Itself . 423

chaPter 12 Let’s Go Live . 463

inDex . 489

534045ffirs.indd 1 3/16/10 9:35:31 AM

www.free-eboooks-download.org

534045ffirs.indd 2 3/16/10 9:35:31 AM

Silverlighttm 4
Problem – Design – solution

Nick Lecrenski

534045ffirs.indd 3 3/16/10 9:35:31 AM

Silverlighttm 4: Problem – Design – Solution

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-53404-5

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.
If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2009940875

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. Silverlight is a trademark of Microsoft Corporation in the United States
and/or other countries. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

534045ffirs.indd 4 3/16/10 9:35:31 AM

http://www.wiley.com
http://www.wiley.com/go/permissions

This book is dedicated to my beautiful wife Kristie,

my daughter Tabetha, and our newest addition to

the family, baby Cheyenne. Without their collective

patience over the last nine months this book would

not have been possible.

— Nick LecreNski

534045ffirs.indd 5 3/16/10 9:35:31 AM

acquiSitionS eDitor
Paul Reese

Project eDitor
Maureen Spears

technical eDitor
Jonathan Marbutt

ProDuction eDitorS
Tim Tate
Amy Weintraub

coPy eDitor
Nancy Rappaport

eDitorial Director
Robyn B . Siesky

eDitorial manager
Mary Beth Wakefield

aSSociate Director of marketing
David Mayhew

ProDuction manager
Tim Tate

vice PreSiDent anD executive grouP
PubliSher
Richard Swadley

vice PreSiDent anD executive PubliSher
Barry Pruett

aSSociate PubliSher
Jim Minatel

Project coorDinator, cover
Lynsey Stanford

comPoSitor
Craig Johnson, Happenstance Type-O-Rama

ProofreaDerS
Josh Chase, Word One
Carrie Hunter, Word One
Scott Klemp, Word One

inDexer
Johnna VanHoose Dinse

cover DeSign
Michael E . Trent

cover image
© Valueline/Punchstock

creDitS

534045ffirs.indd 6 3/16/10 9:35:31 AM

about the author

nick lecrenSki is a developer with 10 years of experience in a wide range of
Microsoft technologies including Visual C++, C#, VB, VB.NET, SQL Server,
.NET Framework, ASP.NET, AJAX, Silverlight and more. He has a BS in
Computer Science and has worked in various fields from biometrics to financial
services. He is also the founder/lead developer of MyFitnessJournal.com, a
fitness training website that currently utilizes Silverlight technology and has
thousands of registered users.

about the technical eDitor

jonathan marbutt is Vice President of Development for WayCool Software, Inc. based in
Birmingham, AL. He has been working professionally in software development since 1996 and
has covered various Microsoft technologies from VB6 to .NET. Over the recent years, Jonathan
developed using Silverlight to build Rich Internet Line-of-Business applications for the non-profit
sector. Through this development, he’s focused on User Experience (UX) by utilizing Microsoft
products such as Expression Blend and technologies such as Silverlight. You can contact Jonathan
at http://www.jmtechware.com.

534045ffirs.indd 7 3/16/10 9:35:31 AM

acknowleDgmentS

writing a technical book like thiS one is an eye-opening experience. For years, I have been on
the other side as the reader of hundreds of books on topics ranging from video game programming to
the latest version of ASP.NET. I’ve never given much thought about how much work actually goes into
the writing and producing one of those aforementioned books. Now, as a first-time writer who has
completed his first book, I can safely say I’ll never take the hard work that authors and publishers
perform for granted again. With that said, I want to take the time to thank everyone who helped to
make this book possible. First, I want to thank my wife, who despite being pregnant with a due date
scheduled right smack in the middle of writing this book, continued to encourage the work that I was
doing and put up with many weekends of marathon writing sessions. Needless to say, my chore list
has grown since the book started. Next, I want to thank my daughter Tabetha, who I could only take
to one Mets game this year because of my busy schedule. Luckily, the team was terrible so it wasn’t
much of a sacrifice.

Completing a book like this one involves months of hard work from not just me but also the hard-
working team at Wrox Press. I can’t even begin to convey just how dedicated and professional the
Wrox Press team is when it comes to publishing new books but I will make an attempt by thanking
those who were directly involved in the completion and success of Silverlight 4 Problem-Design-
Solution.

For starters, I want to thank Maureen Spears who was the Project Editor for this book. As a first
time writer, it is imperative to be paired with an editor who has a lot of patience. Luckily, I had
Maureen on my side throughout the process. Whether it was a breaking change in a beta release or
some other crazy issue threatening to sabotage me from hitting a deadline, Maureen was always the
calm voice of reason that would assure me that there was nothing to worry about and these things
happen all the time. More often than not, just knowing that I wasn’t the only writer to hit these
roadblocks was usually enough to get me to the next milestone. In addition to Maureen, I also had
a wonderful Copy Editor in Nancy Rappaport, who no doubt had her hands full with this project.
Thanks to her diligent work, the chapters make logical sense and are grammatically correct. As
a full-time software developer, grammar isn’t always the first thing on my mind when I write. Of
course, although my full-time focus is on programming, when you write a technical book it is vital
to have the content reviewed by another professional software developer to ensure that the author
doesn’t lose the audience along the way. My Technical Editor, Jonathan Marbutt, was an invaluable
resource, ensuring that the chapter code not only compiled but also by reviewing the topics discussed
in the accompanying chapter.

Finally, I want to thank the two people from Wrox who made this book possible in the first place.
Thanks to Paul Reese, the Acquisitions Editor, who from the very beginning was there to help me
convert my idea for a book into a real proposal that would eventually kick off the project. Lastly,
I’d like to thank Jim Minatel, the Associate Publisher, who I first contacted with the idea. Thanks
again, Paul and Jim, for taking the time to listen to my original idea, for providing me with this
great opportunity, and for taking a chance on this first-time writer.

534045ffirs.indd 8 3/16/10 9:35:31 AM

Contents

IntroductIon xv

FitnesstraCkerPlus ChaPter 1: 1

Problem 2
Design 3

Determining Requirements for the Site 3

Silverlight 4 Features 6

Solution 10
Chapter 2 10

Chapter 3 11

Chapter 4 11

Chapter 5 11

Chapter 6 11

Chapter 7 12

Chapter 8 12

Chapter 9 12

Chapter 10 12

Chapter 11 13

Chapter 12 13

Getting Started 13

Summary 17

PrePare to Be PoPular 1ChaPter 2: 9

Problem 19
Design 20

Physical N-Tier Design 21

Load Balancing 22

Cloud Computing 22

Logical N-Tier Design 22

FitnessTrackerPlus Application Design 78

Solution 83
Physical Tier 84

Logical Tier 84

Summary 86

534045ftoc.indd 9 3/13/10 4:48:56 PM

x

Contents

sign Me uP 8ChaPter 3: 7

Problem 87
Design 89

Home Page 90

User Registration 92

Login Control 97

Solution 98
Main Landing Page 98

Home View 107

User Registration 109

Login Control 134

Dashboard 138

Supplemental Pages 139

URI Mapping 140

Summary 140

WelCoMe hoMe 14ChaPter 4: 1

Problem 141
Adding Navigation 142

Providing Site Announcements 142

User-Selectable Themes 142

Account Settings 143

Adding a Dashboard 143

Design 143
User Home Page 144

Navigation Menu 154

Site Announcements 155

Account Settings 156

Theme Selection 157

Fitness Summaries 158

Solution 158
Global Variables 159

Navigation Menu 159

User Home Page 165

Dashboard 169

Account Settings 172

Theme Selection 180

Site Announcements 186

Fitness Summaries 191

Summary 191

534045ftoc.indd 10 3/13/10 4:48:56 PM

xi

CONTENTS

one More sliCe Can’t hurt 19ChaPter 5: 3

Problem 193
Design 194

User Stories 195

Requirements 196

Food Log 196

Solution 200
User Interface 201

Database 214

Data Access 214

Business Logic 214

User Interface Code Behind 217

Summary 232

tiMe to hit the gyM 23ChaPter 6: 3

Problem 234
Design 234

User Stories 235

Requirements 235

Exercise Log 236

Solution 241
User Interface 242

Database 255

Data Access 256

Business Logic 257

User Interface Code Behind 262

Summary 278

aM i Working hard enough? 27ChaPter 7: 9

Problem 279
Design 280

User Stories 280

Requirements 281

Measurement Log 282

Calculator Controls 287

Solution 289
Measurement Log Page 289

Calculator Controls 307

Summary 311

534045ftoc.indd 11 3/13/10 4:48:56 PM

xii

Contents

unFinished Business 31ChaPter 8: 3

Problem 314
Design 314

Food Summary 315

Exercise Summary 317

Measurement Summary 318

Printing Support 319

Solution 319
Food Summary 320

Exercise Summary 333

Measurement Summary 338

Summary 347

sharing your suCCess 34ChaPter 9: 9

Problem 350
Design 351

Public Journal Settings 352

Public Journal 353

Solution 357
Public Journal Settings 358

Public Journal 365

Summary 386

soCial netWorking 38ChaPter 10: 7

Problem 387
Design 388

MySpace 388

MySpace Silverlight SDK 389

FitnessTrackerPlus — MySpace Application 391

Requirements 394

Solution 397
Getting Started 397

FitnessTrackerPlus MySpace Application 400

Summary 421

this site doesn’t run itselF 42ChaPter 11: 3

Generating Revenue for FitnessTrackerPlus 423
Problem 423

534045ftoc.indd 12 3/13/10 4:48:56 PM

xiii

CONTENTS

Design 424
Advertising-Based Solutions 424

Google AdSense 424

Recurring Monthly Fees 426

Which Revenue Solution is the Right One? 428

Solution 429
Google AdSense 429

PayPal 436

Summary 461

let’s go live 46ChaPter 12: 3

Problem 463
Design 464

Supplemental Pages 464

Shared Hosting Providers 468

Solution 468
Summary 487

Index 489

534045ftoc.indd 13 3/13/10 4:48:56 PM

534045flast.indd 14 3/16/10 9:38:39 AM

IntroductIon

through the years, there have been numerous technologies and programming methodologies invented
for the sole purpose of enhancing the end user experience of a website. What started out as static
content pages in HTML quickly morphed into dynamic pages powered by technologies like ASP.NET.
With these dynamic pages, developers could finally put together actual applications on the Web; soon,
with additional enhancements like AJAX, full line-of-business applications were moving from the
desktop to the Web. One common problem with these existing technologies, however, was their reli-
ance on browser-specific JavaScript code. All too often, it became commonplace to design a page for
one browser, only to have that same code fail miserably when viewed by another browser. Sure, with
enough hard work and some strange hacks and tweaks, most of these problems could be resolved.
Still, these Web-based applications just never seemed to feel as responsive and slick as their desktop
counterparts. This is where a technology such as Silverlight comes into the picture.

Although the first major version of Silverlight did not offer much in the way of application develop-
ment, it did not take long for Silverlight 2 to provide developers with the means to create Web-based
applications in .NET code without worrying about browser specifics. As an added bonus, Silverlight
also came with rich user interface functionality, such as smooth animations and video support. As
good as Silverlight 2 was at solving some of these initial problems, it still lacked some critical features
that developers needed to really bring powerful line-of-business applications to the Web. The next
release of Silverlight, or version 3, attempted to address this issue by adding several important
new features including Theme support, Charting, Navigation, Offline Functionality, and many
more. However, even with this release, a couple of features were still absolutely critical to line-
of-business applications, not the least of which was support for printing. Enter Silverlight 4. Now
with full printing support, implicit styling, improved support for in-place editing of data with the
DataGrid control, and an updated and more powerful version of WCF RIA Services, you really have
all the necessary tools at your disposal to migrate existing line-of-business applications from the
desktop to the Web without losing a step in terms of user interface functionality and responsiveness.

I wrote this book for a couple of reasons. First, these latest enhancements to Silverlight are so pow-
erful and address so many of the initial shortcomings of previous versions that I felt compelled to
help drive adoption of this great new technology by showing off some of the latest features and how
easy it can be to develop a powerful Rich Internet Application (RIA) using some of these features.
Second, I felt that although many books have been written about developing websites in general, not
many also address the specific challenges that go into the design and implementation of a site as well
as the deployment and business side of things.

In this book I will address both of these desires by first walking you through the creation of a fic-
tional online fitness tracking application called FitnessTrackerPlus. Thanks to the unique format of
the Problem-Design-Solution series you will see all facets of development, such as requirements for
gathering, designing, implementation, and finally deployment. After seeing how to create the site, I
will then turn the discussion towards revenue-generating strategies including integration of Pay-Per-

534045flast.indd 15 3/16/10 9:38:39 AM

xvi

IntroductIon

Click advertising and recurring monthly subscriptions using PayPal. Finally, unlike most books, I
won’t just be covering the final build process. Instead, you will see, step-by-step, how to deploy the
final solution to a real shared hosting site.

Before getting started, however, I want to take this opportunity to thank you, the reader, for select-
ing this book. I sincerely hope you find this book enjoyable and full of techniques that you will be
able to apply to your own Silverlight-based solutions.

Who thIs Book Is For

This book is specifically geared toward readers who have been actively developing solutions in
ASP.NET and Silverlight 2 or 3. This book is not a primer on either of these two technologies.
Instead, you will see how to make use of enhancements to the latest version of Silverlight in order to
create a Rich Internet Application. In general, I will not be covering in great detail how to develop
in Silverlight or the related ASP.NET technology that is required for all Silverlight-based solutions.
There is specific coverage of the new features in Silverlight 4 including WCF RIA Services and the
new Silverlight Toolkit. In order to get the most out of this book you should have a good under-
standing of how to use all of the existing Silverlight controls.

What thIs Book covers

This book covers many topics related to the new features found in Silverlight 4 and the Silverlight
Toolkit. The following is a brief outline of what each chapter will be covering.

Chapter 1:➤➤ Overview of FitnessTrackerPlus.

Chapter 2:➤➤ Multi-Tier Architecture, XAML, Silverlight 4 Overview, LINQ to SQL, Entity
Framework, SQL Server 2008, WCF RIA Services.

Chapter 3:➤➤ WCF RIA Services with ASP.NET Membership, Role, and Profile providers.

Chapter 4:➤➤ Silverlight Toolkit, themes and creating a Dashboard.

Chapter 5:➤➤ Data Entry with the AutoCompleteBox, DataGrid, DataForm, and additional
controls from the Silverlight Toolkit.

Chapter 6:➤➤ More Data Entry with Cascading ComboBox controls and additional WCF RIA
Services work.

Chapter 7:➤➤ Using the new DomainDataSource control for easy data binding and implementing
a basic plug-in system.

Chapter 8:➤➤ Adding Charts to the Dashboard.

Chapter 9:➤➤ Creating a public journal page with the navigation framework and integrating
HTML with Silverlight.

534045flast.indd 16 3/16/10 9:38:39 AM

xvii

IntroductIon

Chapter 10:➤➤ Social Networking and creating a MySpace Silverlight application.

Chapter 11:➤➤ Generating revenue with AdSense and PayPal subscriptions.

Chapter 12:➤➤ Final build and deployment to a live shared hosting provider—Discount
ASP.NET.

What you need to use thIs Book

To follow this book as well as to compile and run the FitnessTrackerPlus application, you need the
following:

Windows 7, Windows Vista, Windows XP, Windows Server 2008, or Windows Server 2003.➤➤

Any edition of Visual Studio 2010. In the book, I use Visual Studio 2010 but you can com-➤➤

pile all the code and run it under the free Express Edition as well.

Silverlight 4 Tools SDK.➤➤

Silverlight Toolkit.➤➤

WCF RIA Services Framework SQL Server Express 2008.➤➤

Expression Blend (optional for viewing/editing XAML).➤➤

conventIons

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Boxes like this one hold important, not-to-be forgotten information that is
directly relevant to the surrounding text.

Notes, tips, hints, tricks, and asides to the current discussion look like this.

As for styles in the text:

New terms and important words are ➤➤ italicized when first introduced.

Keyboard strokes are shown like this: Ctrl+A.➤➤

534045flast.indd 17 3/16/10 9:38:39 AM

xviii

IntroductIon

Filenames, URLs, and code within the text look like so: ➤➤ persistence.properties.

Code is presented in two different ways:➤➤

We use a monofont type with no highlighting for most code examples.
We use bolded monofont to emphasize code that is of particular importance in
the present context.

source code

As you work through the examples in this book, you may choose either to type in all the code
manually or to use the source-code files that accompany the book. All of the source code used in
this book is available for download at www.wrox.com. Once at the site, simply locate the book’s title
(either by using the Search box or by using one of the title lists) and click the Download Code link
on the book’s detail page to obtain all the source code for the book.

Code snippets that are downloadable from wrox.com are easily identified with an icon; the filename
of the code snippet follows in a code note that appears after the code, much like the one that follows
this paragraph. If it is an entire code listing, the filename should appear in the listing title.

code snippet [filename]

Because many books have similar titles, you may find it easiest to search by
ISBN; this book’s ISBN is 978-0-470-53404-5.

Once you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

errata

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time you will be helping us provide even
higher-quality information.

534045flast.indd 18 3/16/10 9:38:40 AM

www.wrox.com
www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx

xix

IntroductIon

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or
one of the title lists. Then, on the book details page, click the Errata link. On this page you can view
all errata that have been submitted for this book and posted by Wrox editors. A complete book list,
including links to each book’s errata, is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Errata page, go to www.wrox.com/contact/techsupport.shtml
and complete the form there to send us the error you have found. We’ll check the information and, if
appropriate, post a message to the book’s errata page and fix the problem in subsequent editions of
the book.

p2p.Wrox.com

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system on which you can post messages relating to Wrox books and related technologies and inter-
act with other readers and technology users. The forums offer a subscription feature to e-mail you
topics of interest of your choosing when new posts are made to the forums. Wrox authors, editors,
other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

534045flast.indd 19 3/16/10 9:38:40 AM

www.wrox.com
http://www.p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
http://www.wrox.com/misc-pages/booklist.shtml

534045flast.indd 20 3/16/10 9:38:40 AM

FitnessTrackerPlus
An Overview of the FitnessTrackerPlus Application

In the fall of 2008, Microsoft released an update to its new media-centric browser plug-in
Silverlight. This update probably wasn’t very exciting to end users who may have had Silverlight
installed to watch the 2008 summer Olympics, but to developers who make use of Microsoft
web technologies, a monumental change had occurred. Silverlight 2.0 finally included the long-
awaited support for C#/VB.NET programming directly in the Silverlight world. No longer were
developers forced to utilize the plug-in with a JavaScript-based API only. With the addition
of C#/VB.NET support, it seemed like Silverlight may have finally made the necessary jump
required in order to support line-of-business-style applications. Although a dramatic improve-
ment from its predecessor, Silverlight 2 still left a lot to be desired in terms of line-of-business
controls. Luckily, Microsoft has heard developers loud and clear and made several important
enhancements in version 3 that specifically addressed line-of-business needs. Although the
Silverlight 3 release meant developers had a powerful toolkit at their disposal for creating rich
internet applications, some features were still omitted that were absolutely crucial in transition-
ing line-of-business applications from the desktop to the web. However, with the latest release
of Silverlight version 4, these features have finally made it into the runtime, including a new
Printing API, RichTextArea, Clipboard API, mouse wheel support, Implicit theming, and right-
click event handling to name a few. Features like printing, right-click menus, and clipboard
support offer some of the final pieces of the line-of-business missing from the Silverlight puzzle
and may, in fact, make this latest release of Silverlight the most exciting yet for developers.

It is the primary intent of this book to introduce you to some of these great new features as
well as show you some advanced techniques that you can apply to the development of your own
Silverlight-based line-of-business solutions. In this book I will be following the Wrox Problem-
Design-Solution style so that each chapter contains a detailed problem statement followed by a
design analysis and solution implementation. I will not be discussing detailed API information
for Silverlight and the various controls; however, all of this information is available by down-
loading the official Silverlight 4 documentation from http://www.silverlight.net. This
book will be taking you through the creation of a fully functional Silverlight 4 line-of-business

1

534045c01.indd 1 3/13/10 4:53:23 PM

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

2 ❘ Chapter 1 FitnesstrackerPlus

application while touching on several important topics such as scalable design, social networking,
SEO, revenue generation, rich user interfaces, and others.

In this chapter, you learn the following:

How to take a great idea and build a design to make it into an even better web application.➤➤

What pages you will need for the application.➤➤

What the new Silverlight 4 features are that you’ll use to build your application.➤➤

How you’ll actually build the application through membership, personalization, journaling, ➤➤

and social networking. You also learn how to monetize the site, as well as test and deploy it.

What software you’ll need to download and install and what the basic setup instructions are ➤➤

for the site.

It is an exciting time for Silverlight development, and with the plug-in installed on millions of com-
puters and newly announced support in MySpace, now is a great time to learn how to incorporate
the technology into your own solutions.

problem

After a few years of full-time software development, I realized that between sitting in a chair for
hours on end, and the not-so-great foods that are consumed during those crunch-time marathon
coding sessions, I would probably need to consider some healthy habits to offset what can otherwise
be a very sedentary work environment and lifestyle. The first step for me was to join a local gym,
and watch what I eat when not on a marathon coding session. After a few weeks of working out I
started to wonder, “Am I getting the results I was looking for? Are these foods really good for me?
In fact, how can I even measure if I am making any progress while spending all of these hours in
the gym?” Perhaps most importantly, the programmer in me decided to ask, “How can I write some
software to help me keep track of what I do here?”

Most people would have just gone home, hopped on the Internet, and found some software or a web
site that does this very thing. As programmers, however, we can just fire up the IDE and write our
own instead. I decided that I wanted to create a new Silverlight-based web application that enables
people to keep track of diet, exercise, and measurements. It would also be nice if the site could fos-
ter a community of users who share success with others through public facing journals hosted on
the site, and integration with social networking sites such as Facebook and MySpace. Because this
seemed like it could become a pretty popular site that could generate enough revenue to sustain
itself, I also wanted to integrate some revenue streams through some form of pay-per-click advertis-
ing and monthly premium memberships for access to enhanced features of the site. At this point,
the only thing missing was a name for the site and, of course, the implementation. For the name, I
decided on FitnessTrackerPlus. I figured the “Plus” suffix will let users know that they are signing
up for a more feature-rich site than traditional ASP.NET sites they may have used in the past. Or at
least I will attempt to convince myself of that since I couldn’t think of a nice catchy Web 2.0 name
like Google or Twitter that works well for a fitness-tracking web site.

534045c01.indd 2 3/13/10 4:53:23 PM

Design ❘ 3

Design

In this book, you will be creating a Silverlight 4 web application and will be utilizing the new fea-
tures included in Silverlight 4 to provide the user with a rich user interface that is more responsive
than a traditional ASP.NET web site. While the focus will be on creating an online fitness-tracking
system, many of the features and techniques discussed can be applied to other line-of-business appli-
cations as well. Like most line-of-business applications, the primary purpose of the site is to allow
users to enter data and view reports on that data. You will also be adding a social networking aspect
to the site as well. In the end, you should be able to leverage the data entry, charting, site structure,
SEO, and social networking components when building your own line-of-business applications in
Silverlight.

Determining requirements for the site
The first step in the design phase of FitnessTrackerPlus is to get a detailed list of requirements for the
site. I briefly touched upon some of the most basic high-level features that will be required by the site,
but now it’s time to flesh out everything. As with any application, it’s best to collect as much detail
about requirements as possible before writing a single line of code. Changes will always be easier to
make at this stage of the game, as opposed to once you have already started coding a solution. The
following sections list the major features that FitnessTrackerPlus will include.

Scalable

The more popular a site becomes, the more important it is that the new traffic can be handled with-
out causing problems for existing users. In order to facilitate this, a multi-tiered architecture should
be used. This allows the site to grow as the site’s popularity grows, as well as keeps a clean separa-
tion between user interface, business logic, and data access code.

Rich User Interface

Users will log on to the site to quickly enter daily exercise, foods, and measurements. A rich user
interface that utilizes Silverlight helps to ensure that the amount of time performing data entry tasks
is minimized. The less users have to spend entering data, the more time they will have to view reports,
measure progress, and to interact with others. The key to making this process simple and painless is to
ensure that the pages are not cluttered with large data entry forms. The data entry for foods, exercises,
and measurements should be simple enough so that users can quickly figure out what they need to do
in order to enter information. It is also common in web sites now to provide multiple themes for users
so that they can select a favorite color scheme or site layout. Your site should provide a similar theme
selection feature that also remembers theme preference so it can be restored on the next login.

Dashboard

Once users successfully log into the site, they should be presented with a dashboard that shows basic
fitness information for the current day. The dashboard should provide a simple non-cluttered look
and give the user quick access to current measurements, nutrition, and exercise summaries, and any
site announcements that you want users to be aware of. Site announcements can be a good tool to

534045c01.indd 3 3/13/10 4:53:23 PM

4 ❘ Chapter 1 FitnesstrackerPlus

let users know about upcoming site maintenance or new features, as well as any features that are
currently being worked on for future releases. Such announcements enable you to avoid bulk e-mails
that could possibly end up being interpreted as spam.

Nutrition Log

The goal of the nutrition log is to provide a simple way for users to enter the foods they eat and view
basic summaries of the nutrients that they consumed during the course of the day. Because that is
the primary goal, any control or feature that does not directly make this process easier should not
be added to the screen. All too often, you’ll find what you think will be a useful web site that pro-
vides a service you’re looking for only to sign up and find out that the developers have crammed in
as many features as possible with little regard to the effect on the overall user interface. It should
not require a training manual for people to use any part of your site, especially the data entry. It will
be difficult to show your users how they are progressing if they don’t come back to the site daily to
enter foods. The only way they will consistently do so is if the process is quick and easy.

In order to help users track the foods they eat, you should provide a database of foods that the user
can search. With millions of foods on the market, it is not practical or realistic to include every food
in your database, so you’ll also need to provide a mechanism for users to create and manage custom
foods, complete with custom nutrition facts for the given food. The user doesn’t want to browse an
entire food database on the site in order to find a specific food, so you need to provide an assisted
search method. Most sites now have some sort of auto-suggest functionality in search boxes that
helps guide the user to the correct entry in the database. Your site should provide similar functional-
ity by taking the first few characters typed and suggesting foods that match the search criteria in the
food database. In most cases, you want your users to type in a few letters of a food, click the match-
ing item, and move on to the next food they ate.

Exercise Log

The exercise log will be very similar in functionality to the nutrition log. Again, the primary goal
is to provide the user with a quick and easy way to enter daily exercises and workout information.
The database should contain a list of well-known exercises that users can search. You should add
auto-suggest functionality to the search box as you did with the food search. In addition, to make
exercise entry easier, you should break down exercises into various muscle groups and provide users
with the capability to browse exercises based on those muscle groups. Just as you probably can’t
populate your database with every known food, you most likely will miss some exercises that people
perform as well, so users should be able to create and manage their own custom exercises.

Measurements Log

One of the most important aspects of the site will be that users can keep track of their current mea-
surements. You want to allow for data entry of a few standard measurements such as weight, BMI,
waist, and legs. As you did with the exercise and nutrition logs, you will provide a way for users
to create custom measurements that they would like to keep track of. Although keeping track of
numerical measurements can be an effective way to measure fitness progress, it would also be ben-
eficial to give users a visual representation of that progress. In order to satisfy this requirement, the
site should have a mechanism to upload images of the user when they are entering measurements.

534045c01.indd 4 3/13/10 4:53:24 PM

Design ❘ 5

Public Journal Page

Once your users have taken the time to update their journal, they may want to share their updates
with other users as well as friends and family. Getting positive feedback when working toward any
goal can provide powerful motivation. Your site should allow users the option to share information
with others. You can do this by providing a public-facing version of the journal similar to other
social networking sites such as MySpace and Facebook. What you want to avoid is forcing the user
to share a long, convoluted URL that friends and family have no chance of remembering; you need
the site to give the user a friendly URL in the form of FitnessTrackerPlus/Journals/username.
When users enter that URL in the browser, it should take them directly to the public-facing journal
page that matches the username specified. Because some users may not want to share all the infor-
mation in their journal, you should give them the option of sharing everything or any combination
of foods, exercises, measurements, and journal entries. Users should be able to disable sharing of the
data or make their journals private again at any time.

Social Networking Integration

Although you are trying to create primarily a data entry application, it would not be wise to ignore
the explosion of social networking sites that have been created in the last few years. Most content-
based sites have found ways to integrate with popular sites such as MySpace, Facebook, Twitter,
and others. Providing this integration further promotes the sharing of information and the ability
to gather feedback about the information being shared. Because it’s been established already that
you are trying to build a new online community right here at FitnessTrackerPlus, you also want to
take advantage of what some of the other major social networking sites currently have to offer for
integration. In addition to offering your users with the public journal page, you should also provide
them with the option to share their fitness information with others on an existing social network-
ing site like MySpace. Now that MySpace offers official support for Silverlight applications, you
should be able to create a MySpace application that allows users to share data right from their own
MySpace profile page.

Browser History Support

One of the complaints over the last couple of years about Rich Internet Applications, especially
AJAX-based solutions, has been the lack of support for basic browser navigation functions. All too
often, users would be engaged in a web application that utilized an AJAX library and they would
click the Back button on the browser only to be brought all the way back to the home page or login
screen. Your application should fully support browser history and navigation features so that at no
time will an accidental click of the mouse redirect the user back to a login screen or some other page
on the site that is completely unrelated to what they were working on at the time.

Generate Revenue

One issue to consider when starting a site like this is that if it gains in popularity and you want to use
a hosting provider that offers technologies such as SQL Server and ASP.NET, you will have to cover
the costs associated with that hosting. When starting out, you can most likely get away with one
of the many shared hosting providers available online. As the site grows, you may need to look at a
dedicated hosting solution. In either case, it would be best if you didn’t have to pay for this out of

534045c01.indd 5 3/13/10 4:53:24 PM

6 ❘ Chapter 1 FitnesstrackerPlus

your own pocket. You will need to come up with a way to create revenue to pay for the costs of
running and maintaining this site. You can do this by utilizing a pay-per-click advertising service.
In addition to the advertisements, you can look at charging a small monthly fee in order for users
to have access to the site.

Feel Like a Desktop Application

The most important reason for choosing Silverlight for this site’s user interface layer is that it provides
users with a rich experience. The best case scenario is for FitnessTrackerPlus to look and feel like a
traditional desktop application, complete with features that users have come to expect from those
applications, such as mouse wheel support, right click menu options, fluid user interface transitions,
and so on. As you develop FitnessTrackerPlus, you need to ensure that you use these common user
interface features, now available in Silverlight, throughout the application to give the users the
impression that this is not your typical web site.

silverlight 4 Features
As part of the design, you should also think about what technology you will be using to implement
the solution. For this site, the decision has already been made to utilize the new Silverlight 4 runtime
to provide the rich user interface required for the application. The latest version of Silverlight provides
some long-awaited features that will really help in the creation of a rich data entry site. For example,
the public journal feature would have been much harder to implement with the previous version of
Silverlight, but the new Navigation Framework makes this type of thing relatively easy to implement.

Let’s take a look at some of the improvements in this latest release of Silverlight that will make pro-
gramming this site much easier than it would have been with an older version.

Navigation Framework

A major benefit of sticking with the existing ASP.NET technology for creating a web site was that
pages could be bookmarked and shared, and users could easily navigate from one page to the next
using standard features of the web browser. Applications that were written in older versions of
Silverlight could not easily mimic this functionality. Although you could create a rich user interface,
it was terribly difficult to do some basic things such as support browser history, and Forward and
Back buttons. It was also very difficult to have direct links to pages written in XAML. The new
navigation framework takes care of all of those issues by allowing developers to create pages in
XAML that have full support for browser navigation features as well as deep linking so it is now
easy to share XAML-based page URLs. Also included with the new navigation framework is the
capability to map long, complex URLs to simple, easy-to-remember ones. This will become impor-
tant as you work on the public journal page and allow others on the Web to access those pages
using an easy-to-remember URL such as FitnessTrackerPlus.com/username. The URL mapping
located in the App.xaml file is handled by the new UriMapper class shown in the following code:

<navigation:UriMapper x:Key=”uriMapper”>
 <navigation:UriMapping Uri=”/{user}”
MappedUri=”/Views/PublicJournal.xaml?user={username}” />
</navigation:UriMapper>

534045c01.indd 6 3/13/10 4:53:24 PM

Design ❘ 7

In this case, the URI will be the default FitnessTrackerPlus.com/username where the {user}
will be replaced with an actual username. The MappedUri will be the actual path to the XAML
page that contains the public journal. As you can see, the Navigation Framework allows for indi-
vidual XAML pages to behave like a typical ASP.NET page complete with their own query string.
The Navigation Framework will also allow you to simulate some of the ASP.NET master page
behavior. Using navigation frames, you will be able to create user controls for each feature you are
implementing while sharing a common navigation menu and top banner across all of the pages. The
Navigation Framework is a significant enhancement to Silverlight and really takes you a large step
closer to being able to create web applications that combine a rich user interface with the standard
web functionality available in traditional ASP.NET-based web sites.

New Data Controls

With the new release, some important new data controls have been made available including the
DataForm and DataPager. The DataGrid control previously had no support for paging data and it
became a pretty large limitation of the control, especially if binding to a potentially large result set. The
DataPager provides paging capabilities to any data set that implements the IPagedViewCollection.
Because the ObjectDataSource supports this interface, you can set the DataPager to work in con-
junction with the DataGrid and provide an efficient paging mechanism for large result sets. The new
DataForm provides a very powerful way to display detailed information about a data item in a standard
data entry form. The DataForm has similar functionality to the DetailsView in ASP.NET, and in this
application, you will use it to provide a data entry screen not only for custom foods, exercises, and
measurements, but also for details about individual nutrition and exercise journal entries that are being
displayed in the DataGrid.

In addition to the DataForm and DataPager controls, there have been important enhancements to
the DataGrid control itself, including optimizations to speed up the overall load time of the control,
and a variety of column sizing options to prevent horizontal scroll bars from appearing when users
resize various column headers.

Control Toolkit

The Silverlight Control Toolkit has been available since version 2 of the runtime was released but
the latest release includes some new controls and promotes some other controls into the Stable band.
Controls in the Stable band are considered pretty much ready for prime time and have been thor-
oughly tested. These controls are updated and modified only during bug fix cycles and typically are
safe from breaking changes. Preview band controls are subject to modifications that include break-
ing changes, so there is some minimal risk to using them in a production application. Experimental
band controls are really intended for evaluation only. These experimental controls should not be used
in production applications, as in most cases they are not feature complete and it is a pretty safe bet
that breaking changes will be made between releases. Table 1-1 lists the controls available in the
toolkit as well as the current stability status:

534045c01.indd 7 3/13/10 4:53:24 PM

8 ❘ Chapter 1 FitnesstrackerPlus

table 1-1: Controls Available in the Control Toolkit

toolkit available Controls

Stable Quality Band DockPanel

Expander

HeaderedContentControl

Label

NumericUpDown

Viewbox

WrapPanel

Preview Quality Band Accordion

Charting

DomainUpDown

ImplicitStyleManager

LayoutTransformer

Rating

TimePicker

TimeUpDown

Eleven themes

Experimental Quality Band TransitioningContentControl

GlobalCalendar

TreeMap

Drag & Drop

Busy Indicator

Available Themes (All are considered

part of the Preview Quality Band)

Bubble Crème

Bureau Black

Expression Dark

Expression Light

Rainier Purple

Rainier Orange

Shiny Blue

Shiny Red

Twilight Blue

Whistler Blue

Developers can get access to the source code over at the CodePlex site using the following URL:
http://silverlight.codeplex.com. The project has been made open source so you can feel free
to make changes to the code and integrate those changes into your own projects. If you are not
interested in the source code, you can also download just the raw binaries and add them to your
Silverlight project. This toolkit provides some great controls and features that are not available from
the Silverlight 4 runtime. You will be using them extensively throughout the FitnessTrackerPlus
application. The application will make use of the Label, DockPanel, Charting, TimePicker,

534045c01.indd 8 3/13/10 4:53:24 PM

Design ❘ 9

TimeUpDown, GlobalCalendar, BusyIndicator, and all of the available themes. In the following
chapters, I go into detail about each one of these controls and demonstrate how they really provide a
large amount of user interface functionality with a very minimal level of development effort.

WCF RIA Services

These new services are an important addition to Silverlight and help provide n-Tier data support
based on the new ADO.NET data services. The services also provide a means to perform data entry
validation on the client along with paging, sorting, and querying data. WCF RIA Services will also
help with the integration of Silverlight applications with the ASP.NET authentication and role man-
agement services. Perhaps one of the biggest benefits to this new feature is providing a way to handle
change tracking between tiers, which was not straightforward in earlier Silverlight versions when
using ORM technologies such as LINQ to SQL or the Entity Framework.

Dynamic, Implicit, and BasedOn Styling

The new dynamic and implicit styling support in Silverlight 4 provides a way to change the currently
applied theme at runtime. When attempting to achieve this functionality in previous versions of
Silverlight, developers were forced to worry about applying the theme elements to the entire visual
tree of controls manually. Dynamic styling also provides the capability to change the theme more than
once, a difficult and error prone process before, which sometimes required rebooting the Silverlight
application to apply the new theme changes. BasedOn styling from which other style definitions can
inherit allows you to create base styles and then styles that inherit the settings from that base style.
Now you can create a style with some basic settings and when you need to change only one aspect
of that style to use in another control, you don’t have to copy the entire original style to include that
change.

Finally, implicit styling also gives you the ability to declare a style that applies to all controls of the
specified type. This gives you a much easier way to share styles across controls and is very similar to
CSS based styling. For example, implicit styling allows you to style all TextBox controls with a thick
border using code similar to the following:

<Style TargetType=”TextBox”>
 <Setter Property=”BorderThickness” Value=”5” />
</Style>

Additional Features

In addition to the major feature enhancements I have mentioned in the previous sections, the follow-
ing enhancements have also been added to the Silverlight 4 runtime:

Webcam/microphone access➤➤

ICommand support➤➤

HTML Hosting in Offline mode➤➤

Elevated trust applications➤➤

Local file access➤➤

534045c01.indd 9 3/13/10 4:53:24 PM

10 ❘ Chapter 1 FitnesstrackerPlus

COM Interop➤➤

Notification API in Offline mode➤➤

Network authentication➤➤

Cross-domain networking support➤➤

Keyboard access in full screen mode➤➤

Text trimming➤➤

Right-to-left, BiDi and complex script➤➤

Offline DRM➤➤

H.264 protected content➤➤

Support for using the Silverlight plug-in as a drag & drop target➤➤

Managed Extensibility Framework➤➤

Support for Google Chrome web browser➤➤

solution

In the “Solution” section of each chapter, I will take you through the complete implementation
details required to build the features highlighted during that chapter. This section of the chapter
will typically contain the majority of the code snippets along with brief discussions and explana-
tions about what the code is doing and why it is doing it. For this first chapter I won’t be getting into
any real code, but instead I’ll give you a quick overview of what you can expect to see in Chapters 2
through 12.

Chapter 2
The second chapter is all about architecture and a discussion of the various technology choices that are
available to Silverlight developers. The goal, of course, is to make sure that choices are made that will
allow you to keep a multi-tiered design and implementation with an emphasis on both scalability
and performance. This chapter will be broken down into discussions about both the Physical N-Tier
design as well as the Logical N-Tier design. I will briefly cover the following technologies before ulti-
mately deciding which ones will be used for FitnessTrackerPlus, along with the reasons why:

Silverlight Toolkit➤➤

Silverlight Extensions➤➤

ASMX Web Services➤➤

WCF Web Services➤➤

WCF RIA Services➤➤

ADO.NET➤➤

534045c01.indd 10 3/13/10 4:53:24 PM

Solution ❘ 11

Entity Framework➤➤

LINQ to SQL➤➤

ADO.NET Data Services➤➤

SQL Server➤➤

Oracle➤➤

MySQL➤➤

Chapter 3
In Chapter 3 I will focus on how to integrate the ASP.NET Membership, Profile, and Role services
into the FitnessTrackerPlus Silverlight application. You will see how the new WCF RIA Services
Framework makes integration with these services simple. After completing this integration process,
you will then add user registration and login capabilities to the application. Finally, I will take a look
at how you can prepare an alternate view of the FitnessTrackerPlus site for those users who may have
not yet downloaded and installed the Silverlight plug-in. This way, you will ensure that users without
the plug-in can still access the landing page and find out more information about the site before mak-
ing a decision about installing Silverlight on their own machine.

Chapter 4
In Chapter 4 I will cover the initial design and implementation of the dashboard page. The dashboard
page will be the first page that users see after successfully creating a new account and logging into
the site. The dashboard page will also provide users with the ability to dynamically select a theme for
the site. In this chapter I will show you how to combine the theme files from the Silverlight Control
Toolkit with the new Dynamic and Implicit Styling features of Silverlight in order to provide the
users with the ability to dynamically change the current site theme. You will also begin to make use
of the ASP.NET Profile provider to make sure that the theme selection is saved in the user’s profile so
that it can be restored upon the next successful login. Finally, you will also see how to use the new
ChildWindow control included in Silverlight in order to provide users with site announcements.

Chapter 5
Chapter 5 begins the first of three data entry chapters. In this chapter you will be designing and
implementing the food log page where users will be able to enter the foods they eat on a daily basis.
I will cover how to provide a user-friendly way to search for foods with the new AutoCompleteBox
control. You will also see how the new GlobalCalendar control in the Silverlight Toolkit can be
used to provide users with access to previous food log entries.

Chapter 6
In Chapter 6 you will design and implement the exercise log page. Instead of relying on the
AutoCompleteBox control, you will be making use of a cascading DropDownBox solution in order to

534045c01.indd 11 3/13/10 4:53:25 PM

12 ❘ Chapter 1 FitnesstrackerPlus

provide users with an easy way to select exercises for their log. You will also see how to make use of
the new DomainDataSource control to provide easier data binding with data that you make avail-
able through the WCF RIA Services created in your business logic layer.

Chapter 7
In Chapter 7 you will create the final data entry page of the application. The only page left to work
on is the measurement log page. On this page, you will be providing users with the ability to keep
track of various fitness measurements. To help assist users with some of the calculations, you will
be building a plug-in system that will display a special modal calculator control that can be used to
calculate the user’s BMI value based on parameters supplied by the user.

Chapter 8
In Chapter 8 I will take another look at the dashboard page in order to complete some of the work
done earlier. Part of any meaningful dashboard is to provide the users with some visual feedback
related to their data. In this case, you will be adding some basic charting components to the dash-
board page. As you will see, the latest version of the Silverlight Toolkit makes adding charts to your
Silverlight application a breeze.

Chapter 9
In this chapter you will see how to use the features of the new Navigation Framework in order to
provide a public-facing version of the user’s fitness journal. After your users perform all of the hard
work of dieting and exercising, they may want to share their success stories with family members or
other users of the site. Now, just in case they don’t yet have their own blog or social networking page,
you will be creating one right here on FitnessTrackerPlus that they can use. By using the Navigation
Framework, you will be able to give every user their very own unique URL to share with others that
will lead to a public journal page that includes the user’s food, exercise, and measurement log entries.
Finally, in order to provide visitors with a means of leaving feedback to the users, you will also build a
commenting system that allows for HTML-based comments. That’s right—HTML content embed-
ded in a Silverlight application. The best part is that it’s not really as difficult as you may think.

Chapter 10
Chapter 10 will cover how to incorporate social networking into FitnessTrackerPlus. There is no
doubt that social networking has become a major component of any successful website, and just
because you will be developing in Silverlight does not mean you can’t jump on the bandwagon
as well. In this chapter I will show you step by step how to create a version of the public journal
page in the form of a Silverlight MySpace application. This application will be available to any
FitnessTrackerPlus user that has a MySpace page. Thanks to the now official support for Silverlight
from MySpace, you will see how easy it is to create a Silverlight application using the new MySpace
OpenSocial API and the Silverlight extensions for the API.

534045c01.indd 12 3/13/10 4:53:25 PM

Solution ❘ 13

Chapter 11
In Chapter 11 you will see some possible techniques that you can use in order to generate revenue
for the FitnessTrackerPlus application. Whether you deploy FitnessTrackerPlus to a shared host-
ing provider or you decide to have your own dedicated servers set up to host the site there will most
certainly be a cost associated with it. Of course, generating revenue and making a profit off of the
site is never usually a bad thing either. In this chapter I will show you how to integrate Pay-Per-
Click advertisements directly into the Silverlight application. In case you decide that you don’t want
to subject your users to any kind of advertisements but still want to generate some money to offset
your hosting costs, I will also show you how to charge recurring monthly fees for access to the site by
using the Subscriptions feature of the PayPal developer API.

Chapter 12
In Chapter 12 I will cover how to perform the final build steps for the application as well as show you
step by step how to deploy the site to a live shared hosting provider in Discount ASP.NET. You will
see how Discount ASP.NET provides several unique tools that make deployment of a Silverlight-based
site simple and painless. Some of these tools include utilities to manage IIS, SQL Server and more.

getting started
Before you move on to the next chapter on application architecture, I wanted to get you started with
the project. Silverlight 4 development can be done with the full version of Visual Studio or the freely
available Express edition that can be downloaded at http://www.microsoft.com/Express. For
this book I will be using Visual Studio 2010 Professional Edition as well as the free SQL Server 2008
Express edition with Advanced Services. When downloading the free edition of SQL Server Express,
choose the Advanced Services option which includes the SQL Server Management Studio tool, which
you will be using throughout this book to make modifications to the application database.

Once you have your development environment set up, you will need to download several installation
packages that are required for Silverlight development. All of the required packages are available for
download at http://silverlight.net. This web site is considered the main source of Silverlight
programming information for developers, and contains very useful starter tutorials as well as web-
casts and online forums. Once on the site, you will see the following downloads:

Silverlight 4 Tools for Visual Studio 2010➤➤

Microsoft Expression Blend 3 Trial➤➤

Silverlight Toolkit➤➤

WCF RIA Services➤➤

Downloading the Expression Blend Trial is considered optional and I will be providing raw XAML
for any user interface code that is presented in the book. Visual Studio 2010 now includes complete
designer support for XAML pages, and the Expression tools provide designers with some advanced
tools geared specifically towards website designers. As a developer, I find that the improved tooling
in Visual Studio 2010 is more than sufficient for developing XAML pages, and will not cover the
Blend tool in this book.

534045c01.indd 13 3/13/10 4:53:25 PM

14 ❘ Chapter 1 FitnesstrackerPlus

After downloading all of the required software, you should install the Silverlight 4 Tools for Visual
Studio 2010 first. The installation process for this part of the toolkit can be quite lengthy, so feel
free to brew some coffee while waiting. Once the download is complete, you will want to install the
WCF RIA Services; this installation is much faster, so don’t go anywhere. Finally, you will install
the Silverlight Toolkit, which again is not a lengthy installation process. If you have decided to
download Blend, feel free to install that at this time along with the offline help file.

At this point, you should have everything you need to get started, so it’s time to fire up Visual Studio
and create a new project. The code in this book will be written in C#, so I will be using the C#
project templates, but if you prefer VB.NET, feel free to work with that language as it will not be
terribly difficult to follow the C# code and convert it to corresponding VB.NET code. With Visual
Studio open, you will want to create a new Silverlight project. Specifically, you want to use the new
Silverlight Navigation Application template, as shown in Figure 1-1.

When you click OK, you’re presented with the dialog shown in Figure 1-2, which includes some
additional project options. In this dialog, you are asked to supply a name for the ASP.NET web
project that will link with the Silverlight application. You can go ahead and leave the default
name of FitnessTrackerPlus.Web. The Web project type option should stay set at ASP.NET Web
Application Project, and the Silverlight Version option should stay at 4. Finally, be sure to select
the Enable WCF RIA Services option before proceeding.

Figure 1-1

534045c01.indd 14 3/13/10 4:53:25 PM

Solution ❘ 15

The Navigation Application project template creates two new projects, one for the ASP.NET web site
that will host the Silverlight application called FitnessTrackerPlus.Web, and the Silverlight application
project itself named FitnessTrackerPlus. In the
Silverlight project, you will notice that a new
folder called Views is generated along with
App.xaml, and MainPage.xaml. In the Views
folder, you will see three new pages called About.
xaml, ErrorWin.xaml, and Home.xaml. You will
be replacing these with your own pages, but you
can see from this sample site that was generated
that, unlike previous versions of Silverlight, with
help from the Navigation Framework you can
finally have real page navigation from XAML
pages. At this point you can see the browser
button support by compiling and running the
application. Figure 1-3 shows the newly
generated site running in the browser.

Figure 1-3

Figure 1-2

534045c01.indd 15 3/13/10 4:53:25 PM

16 ❘ Chapter 1 FitnesstrackerPlus

You should note how using the browser’s Back and Forward buttons enables you to navigate
between XAML pages. The URLs generated for these pages support deep linking and will allow
users to bookmark and return to the exact XAML page that they were viewing at a later time. The
Navigation Framework is probably one of the largest and most important enhancements included in
this latest release of Silverlight and will allow you to implement some of the most important features
of FitnessTrackerPlus.

Using the Navigation Framework requires very little code to implement. The majority of the work
is handled by the framework and all you need to do to utilize it is use the new System.Windows
.Controls.Navigation.Frame class. In the following code from the MainPage.xaml file, the Frame
control has its Source property set to a relative URL called /Home. The /Home is translated into the
full /Views/Home.xaml path by the embedded uriMapper object, which is covered later. For now,
just know that setting the Source property to a valid .xaml file is all it takes to load up the Frame.

<navigation:Frame x:Name=”ContentFrame” Style=”{StaticResource ContentFrameStyle}”
 Source=”/Home” Navigated=”ContentFrame_Navigated”
 NavigationFailed=”ContentFrame_NavigationFailed”>
 <navigation:Frame.UriMapper>
 <uriMapper:UriMapper>
 <uriMapper:UriMapping Uri=”” MappedUri=”/Views/Home.xaml”/>
 <uriMapper:UriMapping Uri=”/{pageName}”
MappedUri=”/Views/{pageName}.xaml”/>
 </uriMapper:UriMapper>
 </navigation:Frame.UriMapper>
</navigation:Frame>

Code snippet MainPage.xaml

The actual navigation occurs by setting the NavigateUri property of the HyperlinkButton controls
to the destination page desired. In the following code, the project, Home, and About pages are made
accessible by setting the NavigateUri property to /Home and /About respectively.

<Border x:Name=”LinksBorder” Style=”{StaticResource LinksBorderStyle}”>
 <StackPanel x:Name=”LinksStackPanel” Style=”{StaticResource LinksStackPanelStyle}”>

 <HyperlinkButton x:Name=”Link1” Style=”{StaticResource LinkStyle}”
NavigateUri=”/Home” TargetName=”ContentFrame” Content=”home”/>

 <Rectangle x:Name=”Divider1” Style=”{StaticResource DividerStyle}”/>

 <HyperlinkButton x:Name=”Link2” Style=”{StaticResource LinkStyle}”
NavigateUri=”/About” TargetName=”ContentFrame” Content=”about”/>

 </StackPanel>
</Border>

Code snippet MainPage.xaml

As you move further into the FitnessTrackerPlus application, I will go into more detail about the
navigation system and all of its benefits, including the new URI mapping feature. Before moving on to
the next chapter, you should feel free to launch the default site and see how seamless page transitions
are and how you can move forward and backward through the pages using the browser without any
additional code, all of it courtesy of the new Silverlight Navigation Framework.

534045c01.indd 16 3/13/10 4:53:26 PM

Summary ❘ 17

summary

In this chapter, you have learned some of the history behind the creation of FitnessTrackerPlus, and,
more importantly, how you will be leveraging the latest and greatest features of Silverlight 4 to make
a rich line-of-business-style application. I briefly outlined the new features that you will be utilizing
including the Navigation Framework, Data Controls, Silverlight Toolkit and more. In the Design
section I covered the complete list of functional requirements that the site will have to meet, and in
the solution section provided you with an overview of what to expect in the coming chapters.

You should also now have all the software required for Silverlight development downloaded and
installed, and be familiar with the default navigation project that is created by the project template in
Visual Studio. You pretty much have everything in place to really get started on this project. Although
this book discusses the creation of an online fitness-tracking site, I strongly believe the techniques used
in this site can be applied across a variety of line-of-business web applications. At the end of this book,
you will have created a feature-rich Silverlight web application that has a rich data entry system, social
networking aspects, and community features, and is even capable of potentially generating revenue
from advertising and premium membership subscriptions. It’s even possible that after developing and
using this application, you might just rethink ordering that large pizza during your next all-night
coding session.

534045c01.indd 17 3/13/10 4:53:26 PM

534045c01.indd 18 3/13/10 4:53:26 PM

Prepare to Be Popular
Providing a Scalable Architecture

With the creation of the initial project structure complete in Visual Studio, you can now look
at some of the design aspects of the site, specifically how you’re going to support N-Tier appli-
cation development with Silverlight 4. Many new enhancements to Silverlight now make the
development of these multi-tier applications much easier than in previous versions. This chap-
ter takes a look at many of these new technologies so that you will be familiar with them and
be ready to utilize them as you move forward in the book, implementing new features. These
technologies include the new WCF RIA Services platform, LINQ to SQL, Entity Framework
and SQL Server Express 2008 with Advanced Services.

In addition to the review of the new Silverlight 4 features, I will also be covering how you can
separate your application into multiple layers of functionality to support N-Tier development.
Although every site starts out small, you just never know what can happen on the Internet. By
supporting this kind of code structure, you can avoid being unprepared for a barrage of new
users and instead be fully prepared to handle the eventual millions of users that will be coming
to your site as it grows in popularity.

Problem

As you create the FitnessTrackerPlus application, remember that although at first you will most
likely be the only site user, at some point, with any luck, you’ll have other users. The architecture
decisions that you make when building a single-user application are quite different than the
ones you must make for a full-blown Internet application that can potentially have millions
of concurrent users. There are several distinct problems and challenges that need to be solved
when making the site available to other users. For starters, you never really know how many
people will find the site useful. Millions of people are online and just as many people are cur-
rently going through some form of diet and exercise routine. If a scalable architecture is not
designed for FitnessTrackerPlus, even a couple thousand users hitting the site could potentially
bring it to its knees. It is essential to ensure that even though you are creating a Silverlight

2

534045c02.indd 19 3/13/10 4:53:02 PM

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

20 ❘ ChaPter 2 PrePare to Be PoPular

application instead of a traditional ASP.NET site, you are still adhering to the best practices of
N-Tier development so that the site can be properly scaled as the number of users grows. The tech-
nology that you choose will need to support both logical and physical separation of tiers.

As you work on designing the various tiers of the FitnessTrackerPlus application, you must resist the
urge to stop the design process prematurely and jump right into coding. This is especially critical
when you work on the user interface design. When designing the user interface it is always best to
try and lay out the various screens that will be required for the application. You don’t necessarily
have to have every little detail thought out, but it is best to take some time now and figure out what
screens are needed, and how they should interact with one another. As you have probably discovered
in your own development journey, changes to the user interface and application flow can be made
rather easily before you start coding. If you try to design these screens on-the-fly as you are coding,
you can easily find yourself in a situation where the screen you are developing doesn’t interact the
way you thought it would with other screens. As you will be responsible for the design, implementa-
tion, testing, deployment, and support of this application, you want to be sure to take some of these
important design steps early on in the development cycle. Study after study confirms that spending a
little bit more time during the design phase reduces not only the number of defects but also the total
amount of work required in the coding stage.

Finally, you have to think about what will happen when users hit the home page of the site and
do not have the Silverlight plug-in installed. Despite the fact that Silverlight has been downloaded
and installed on millions of computers worldwide, you have to assume that eventually someone
will arrive at your site who may have no idea what Silverlight is, what it does, or if it is even safe to
install. Most users have some familiarity with installing browser plug-ins such as Flash, and probably
feel very comfortable with doing that, Silverlight on the other hand they may have some reservations
about. You will need to reassure your users that installing Silverlight is not only easy but safe, and
you will need to have a mechanism in place that allows users to view your home page even without
installing the plug-in.

Design

The “Design” section for this chapter breaks down each of the problems outlined in the previous
section. You’ll see the various ways of creating a scalable multi-tier Silverlight application as well as
coverage of several new enhancements available in Silverlight 4 that make N-Tier Silverlight develop-
ment much easier than in previous versions. While working through the design of FitnessTrackerPlus,
you need to build a solid understanding of some important technologies so you can make informed
design decisions. Over the last few years, many different technologies were introduced for both
physical and logical tier development. The following list shows the required tiers for both the physi-
cal and logical design. The logical tier design also includes a list of some popular Microsoft
technologies from which you can choose while you decide on the implementation strategy for
FitnessTrackerPlus.

Physical N-Tier design➤➤

Presentation Tier➤➤

Business Logic Tier➤➤

Data Tier➤➤

534045c02.indd 20 3/13/10 4:53:03 PM

Design ❘ 21

Logical N-Tier design➤➤

Presentation Layer➤➤

Silverlight Controls➤➤

Silverlight Toolkit➤➤

Business Logic Layer➤➤

ASMX Web Services➤➤

WCF➤➤

WCF RIA Services➤➤

Data Access Layer➤➤

ADO.NET, Entity Framework➤➤

LINQ to SQL➤➤

ADO.NET Data Services➤➤

Data Storage Layer➤➤

SQL Server➤➤

Oracle➤➤

MySQL➤➤

DB2➤➤

Physical n-tier Design
The physical architecture usually consists of several distinct hardware layers. This is most com-
monly referred to as an N-Tier server architecture. An N-Tier architecture will usually consist of,
at minimum, data, logic, and presentation tiers — although depending on requirements there could
be even more than those three. Each tier is represented by its own hardware. The data tier would
consist of a database server whose sole responsibility would be data storage. A server residing in the
business logic tier would be responsible for hosting components that perform business logic and data
access. Finally, the presentation tier is responsible for the graphical display of the data as well as pro-
viding the user with a means to input and manipulate data.

The decision to utilize an N-Tier hardware solution is largely dependent on the volume of traffic you
expect your site to attract. At first, you will most likely find that hosting the business logic and data-
base on the same physical tier is sufficient. As your site gains in popularity, however, you will most
likely find it extremely beneficial to offload the work of these layers into separate isolated hardware
tiers. Many web hosting companies have already done some of this work for you. When deploying
your solution, you will most often find that your business logic or ASP.NET/Silverlight application
code will reside on one server, while your database tables and data will be stored on a separate physical
server. For the most part, you will find that these distinct hardware tiers are set up by hosting providers
regardless of whether you are in a shared hosting environment or have your own dedicated server.

534045c02.indd 21 3/13/10 4:53:03 PM

22 ❘ ChaPter 2 PrePare to Be PoPular

load balancing
If you are lucky or just really great at marketing, you may even find that you have to move your site
out of the hosting provider’s servers and into your own dedicated server farm. At this point, you
can really start to reap the benefits of having a solid N-Tier hardware design. If you have designed
your physical tiers correctly, you should be able to handle the additional load with the help of load
balancing. Utilizing a load balancing solution in a server farm can help you manage performance
bottlenecks that may occur as the site grows in users. With load balancing, you can potentially add
more hardware to the overall solution to help with the additional load and increase performance.
Almost all large websites implement some form of a load balancing strategy.

Cloud Computing
Another relatively new consideration you need to be aware of is cloud computing. Although still in
the early stages, cloud computing is starting to gain acceptance in several major sites. Currently there
are several major players in this space including Amazon, Microsoft, and Google, which offer you
the benefits of dedicated hosting providers but with dramatically lower costs. The first player in this
arena was Amazon with its S3 storage service, which offered scalable storage that your applications
could use with simple web services. Amazon then moved into full-blown site hosting in their cloud
with EC2.

Google also offers a similar hosting service with its Google App Engine platform. The newest offer-
ing for cloud-based hosting is Microsoft’s solution called Azure. Microsoft just recently released
details about its new cloud computing solution and hosting packages as well as announcements
about competitively priced SQL Server support through this new Azure platform.

For more information on how you can benefit from the new Azure platform, check
out Cloud Computing with the Microsoft Azure Services Platform, Wiley, 2009.

logical n-tier Design
In addition to applying the N-Tier architecture at the physical hardware level, you must also think
about separating the work performed at the logical level. The logical level of N-Tier design revolves
around the actual implementation code being created. As in a traditional ASP.NET application, you
will be best served by separating your Silverlight application implementation into distinct manage-
able layers of code. By doing this, you will find it much easier to maintain the code over the long
run. In addition to ease of maintenance, separating your code into multiple layers ensures that you
are adhering to your original scalability requirements.

In order to effectively use an N-Tier hardware architecture, you will need to ensure that your pre-
sentation, business logic, and data have been implemented in separate modules that can be hosted
in their respective hardware tiers. Although in many cases an N-Tier implementation involves only
a presentation, business logic, and database tier, you can sometimes see an additional tier added
that is only responsible for data access from the database tier. Typically this layer is hosted on the
same physical machine as the business logic layer. A data access layer can provide another layer of

534045c02.indd 22 3/13/10 4:53:03 PM

Design ❘ 23

separation that helps to ensure your data storage choice can be changed without affecting existing
business logic or presentation code. Figure 2-1 shows a typical logical N-Tier design for an ASP.NET/
Silverlight web application along with the technology choices available for each respective tier.

Figure 2-1

Presentation Layer

The presentation layer represents the user interface of FitnessTrackerPlus. This layer of code includes
the Silverlight project as well as its parent ASP.NET website project. The site will make use of the
standard Silverlight user interface controls as well as some of the new line of business controls that
have been added to the latest version of the runtime. You will also need to utilize controls from the
Silverlight Toolkit to provide additional functionality, including theme support for your site. Table 2-1
gives you a quick look at some of the Silverlight User Interface controls you will be using to create the
user interface of FitnessTrackerPlus.

table 2-1: Silverlight User Interface Controls

silverlight 4 silverlight toolkit

Border

Button

Calendar

Canvas

CheckBox

ComboBox

DataForm

DataGrid

DataPager

DatePicker

Grid

HyperlinkButton

Image

ListBox

PasswordBox

ProgressBar

ScrollViewer

Slider

StackPanel

TabControl

TextBlock

TextBox

ToolTip

Accordion

AutoCompleteBox

Charting

DockPanel

ImplicitStyleManager

Themes

TimePicker

TimeUpDown

WrapPanel

534045c02.indd 23 3/13/10 4:53:03 PM

24 ❘ ChaPter 2 PrePare to Be PoPular

Silverlight 4 Data Controls

Silverlight 4 has added several new controls that will help present data to the user, and you will be
utilizing many of them in the FitnessTrackerPlus application. These controls are as follows:

DataGrid➤➤ : Provides a table-based presentation of data. Several column types are available in
the DataGrid including TextBox, CheckBox, and Template. The template type column pro-
vides you with the ability to create a custom column type. Styling support includes the abil-
ity to customize row backgrounds, show/hide gridlines, show/hide headers, and more. Most
important, it provides an easy programming interface for data binding. You will be incorpo-
rating many of the DataGrid features in both the food and exercise log pages.

DataForm➤➤ : Creates a rich data entry form based on the custom object associated with the
form. The DataForm will create all of the necessary labels and controls required to perform
data entry on the object using any exposed public properties.

DataPager➤➤ : When you need to present large amounts of data in the DataGrid, the new DataPager
control will limit the amount of data being displayed at any given time. This control works in
conjunction with the DataGrid to provide basic paging capabilities.

Presenting Data with the DataGrid

The DataGrid is a powerful control in Silverlight. It gives you a very flexible way to present data to
the user in a table-like structure with rows and columns. It features rich data binding support and
several events that you can hook into during the various stages of data binding. To start using the
DataGrid, you need to add a reference to System.Windows.Controls.Data. After the reference is
created, you then need to add the namespace to your XAML, as shown in the following code:

<UserControl x:Class=”SilverlightControlSamples.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:data=”clr-namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Data”>
 <Grid x:Name=”LayoutRoot” Background=”White” />
</UserControl>

Code snippet MainPage.xaml located in the DataGridExample project.

Once you add the required namespace declaration, you can simply add the DataGrid to your Silverlight
page. The following code shows a DataGrid bound to a collection of Food objects. The DataGrid
makes use of both the built-in DataGridTextColumn as well as a custom HyperlinkButton column
defined by using a DataGridTemplateColumn:

<data:DataGrid x:Name=”CustomFoodsGrid” AutoGenerateColumns=”False”>
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Header=”Food ID” Binding=”{Binding
Path=ID}” />
 <data:DataGridTemplateColumn Header=”Food Name”>
 <data:DataGridTemplateColumn.CellTemplate>

534045c02.indd 24 3/13/10 4:53:04 PM

Design ❘ 25

 <DataTemplate>
 <HyperlinkButton Content=”{Binding Path=Name}”
HorizontalAlignment=”Center” VerticalAlignment=”Center”
Foreground=”#FF0000FF” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
</data:DataGrid>

Code snippet MainPage.xaml located in the DataGridExample project.

Populating the DataGrid control is simple and requires only one line of code. Simply set the
ItemsSource property to a collection of objects. In the following code, the CustomFoodsGrid has
its ItemsSource property bound to a collection of Food objects.

public class Food
{
 public int ID { get; set; }
 public string Name { get; set; }

 public Food(int id, string name)
 {
 this.ID = id;
 this.Name = name;
 }
}

public MainPage()
{
 InitializeComponent();

 CustomFoodsGrid.ItemsSource = new List<Food>
 {
 new Food(1, “Bagel With Cream Cheese”),
 new Food(2, “Deli Sandwich”),
 new Food(3, “Cheeseburger”),
 new Food(4, “Root Beer”),
 new Food(5, “Chocolate Ice Cream”)

 };
}

Code snippet MainPage.xaml.cs located in the DataGridExample project.

Once the data binding takes place, the DataGrid then takes care of displaying the food data in
a tabular format, complete with a nice default style. Figure 2-2 shows the DataGrid displaying
the data with the FoodName column being represented by the HyperlinkButton control that was
declared in the custom DataGridTemplateColumn declaration.

534045c02.indd 25 3/13/10 4:53:04 PM

26 ❘ ChaPter 2 PrePare to Be PoPular

Figure 2-2

Rich Data Entry with the DataForm

Now that you have seen how easy it is to display data in the DataGrid, let’s take a look at how
the new DataForm control provides a great way to present the user with a rich data entry form. As
with the DataGrid, you will need to add a new reference to the project in order to use the DataForm.
The DataForm is part of the new Silverlight Toolkit, so you will want to add a reference to System
.Windows.Controls.Data.DataForm.Toolkit. Once again, don’t forget to add the namespace to
your XAML before adding the control to the page. Listing 2-1 shows the XAML code required
to add a DataForm control to the page.

listing 2-1: MainPage.xaml (located in the DataFormExample project)

<UserControl x:Class=”DataFormExample.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:data_form=”clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Data.DataForm.Toolkit”>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <data_form:DataForm x:Name=”CustomFoodDataForm” />
 </Grid>
</UserControl>

534045c02.indd 26 3/13/10 4:53:04 PM

Design ❘ 27

Working with the DataForm is as simple as assigning a business object to the CurrentItem property of
the DataForm. The DataForm will do the majority of the work by looking at your business object for
any public properties. By default, all public properties are added to the displayed form. Once again,
this can be done with as little as one line of code. For example, to create a DataForm that allows the
user to modify the properties of a particular food, you could simply add the following line of code:

CustomFoodDataForm.CurrentItem = new Food(1, “Cheeseburger”);

If the Food class has a FoodName property with a public setter method, a DataForm like the one
shown in Figure 2-3 displays, allowing the user to update the FoodName. All this with only one line
of code and — most important — no manual creation of a data entry form using Grid, TextBlock,
and TextBox controls, as you needed in previous versions of Silverlight.

The default display of the DataForm is read-only and, at first, the user cannot make any changes to
the data. However, there is a property called CommandButtonsVisibility that can be modified in
the code behind to have the DataForm automatically generate a toolbar with data entry options like
Save, Cancel, Edit, etc.

Figure 2-3

Although this is a very simple example of how to use the DataForm, I will be
providing a much more extensive review of the control in the food, exercise
and measurement log chapters. In those chapters, you’ll make use of the
new DataForm control to provide users with the capability to not only make
changes to entries in those logs, but also create custom foods, exercises, and
measurements.

534045c02.indd 27 3/13/10 4:53:04 PM

28 ❘ ChaPter 2 PrePare to Be PoPular

Providing Paging with the DataPager

Another great addition to Silverlight is the DataPager control. This control makes it simple to
provide paging of large result sets that are being displayed in a DataGrid. Like the DataForm, the
DataPager control resides in the System.Windows.Controls.Data assembly. Just make sure to
add the reference to the project as well as the namespace to the XAML as you did previously. The
property responsible for setting up the paging mechanism is the Source property. This property
takes a binding expression containing the Path and ElementName attributes. The Path needs to be
set to the property of the control that contains the data to be paged, which in most cases will be the
ItemsSource property of a DataGrid control. The ElementName attribute is set to the owner of the
data source specified in the Path attribute earlier. Again, in most cases this will be DataGrid control
itself. You can also specify the PageSize property, which limits the number of displayed rows in the
control at any given time. Listing 2-2 builds off of the previous example by adding a DataPager
declaration to the XAML that hooks up to the CustomFoodsGrid declared earlier:

listing 2-2: MainPage.xaml (located in the DataPagerExample project)

<UserControl x:Class=”DataPagerExample.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:data=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <data:DataGrid x:Name=”CustomFoodsGrid” />
 <data:DataPager x:Name=”CustomFoodsDataPager” Source=”{Binding
ElementName=CustomFoodsGrid, Path=ItemsSource}” PageSize=”10” />
 </Grid>
</UserControl>

It is important to note that although in the previous example you simply bound a generic List<Food>
collection to the DataGrid to present the data, the DataPager requires the data to be stored in an
object that implements the new IPagedCollectionView interface. If you update the previous example
to reflect this change, as well as add enough Food objects to the List to create a paging scenario, you
will have the following code shown in Listing 2-3:

listing 2-3: MainPage.xaml.cs (located in the DataPagerExample project)

using System;
using System.Collections.Generic;
using System.Windows.Controls;
using System.Windows.Data;

namespace DataPagerExample
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {

534045c02.indd 28 3/13/10 4:53:04 PM

Design ❘ 29

 InitializeComponent();

 List<Food> foods = new List<Food>();

 for (int index = 0; index <= 100; index++)
 foods.Add(new Food(index, String.Format(“Custom Food
{0}”, index)));

 CustomFoodsGrid.ItemsSource = new PagedCollectionView(foods);
 }

 public class Food
 {
 public int ID { get; set; }
 public string Name { get; set; }

 public Food(int id, string name)
 {
 this.ID = id;
 this.Name = name;
 }
 }
 }
}

As you can see, you simply need to create a large list of Food objects and assigning the List<Food> to
the new PagedCollectionView. The PagedCollectionView includes a constructor for IEnumerable
so you can still utilize the generic List<T> or any other collection object that implements this inter-
face. Running the example at this point provides you with a DataGrid that is now displaying only
10 rows at a time and includes very user-friendly paging controls. Figure 2-4 shows the DataPager
in action using just the default paging settings and style.

Figure 2-4

534045c02.indd 29 3/13/10 4:53:05 PM

30 ❘ ChaPter 2 PrePare to Be PoPular

In this simple example, the paging is taking place on the client so all 100 records are being stored
in memory. As you will see in later chapters, when you combine the DataPager with the new WCF
RIA Services Framework, you will have a very efficient server-side paging mechanism that leaves a
small footprint on the client providing the user with a very fluid paging experience.

The DataPager is not limited to just the DataGrid control either. You could also set up the Source
property to point to another type of Silverlight control such as a ListBox using XAML code similar
to the following:

<ListBox x:Name=”CustomFoodsList” DisplayMemberPath=”Name” />
<data_form:DataPager x:Name=”CustomFoodsDataPager” Source=”{Binding
 ElementName=CustomFoodsList, Path=ItemsSource}”PageSize=”10”/>

Code snippet MainPage.xaml located in the DataPagerListBoxExample project.

Figure 2-5 demonstrates how the DataPager still functions the same as in the previous example even
though you are no longer attaching the control to a DataGrid.

Figure 2-5

Element to Element Binding

As you work with Silverlight 4 you may notice that ElementName is now a valid attribute in bind-
ing expressions of other controls and not just the DataPager. The ElementName attribute is part of
a new feature in Silverlight 4 called Element to Element binding. This allows any Silverlight control
to bind to properties of another Silverlight control. This feature can be utilized to provide some
interesting possibilities on your site, and it provides the power for the DataPager to page data from

534045c02.indd 30 3/13/10 4:53:05 PM

Design ❘ 31

a variety of source controls. Listing 2-4 shows a simple example of this showing how an Image con-
trol’s size is adjusted by binding to the current value of the slider control. Notice that in Figure 2-6,
the image of the book is the default value of the slider or 100; Figure 2-7 shows the image size
increases by the value of the slider control as it is adjusted. All of this is done with no work in the
code behind. Now this is a pretty trivial example but the feature is clearly very powerful when
you combine it with DataPager and DataGrid controls.

listing 2-4: MainPage.xaml (located in the ElementToElementExample project)

<UserControl x:Class=”ElementToElementExample.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <StackPanel>
 <Image x:Name=”WroxImage” Source=”Images/Wrox.jpg”
Height=”{Binding ElementName=AdjustSize, Path=Value}”
Width=”{Binding ElementName=AdjustSize, Path=Value}” />
 <Slider x:Name=”AdjustSize” Maximum=”1000” Minimum=”0”
Value=”100” />
 </StackPanel>
 </Grid>
</UserControl>

Figure 2-6

534045c02.indd 31 3/13/10 4:53:05 PM

32 ❘ ChaPter 2 PrePare to Be PoPular

Figure 2-7

Silverlight Toolkit

The Silverlight Toolkit made its debut around the time of the initial Silverlight 2 release to web.
The Toolkit has several powerful user interface controls, providing developers with additional func-
tionality that was not available in the Silverlight runtime. In order to keep the download size of
the Silverlight runtime small, some controls that had been left out were made available through the
Toolkit instead. This way, the runtime installation size would not have to grow but developers who
wish to utilize the controls can include the libraries in their XAP files. The Toolkit is an open source
project that is available at http://codeplex.com/silverlight. To strike a balance between pro-
viding early versions of controls for feedback and assuring that controls were considered finished,
the developers of the Toolkit decided to separate all of the controls into four unique quality bands.
These bands are called Mature/SDK, Stable, Preview, and Experimental respectively. By placing the
various controls in these bands, developers could make informed decisions about which controls to
include in their own mission critical projects. Although it is an open source project it is important to
note that the main development team of the Toolkit is composed of Microsoft developers. You can
still feel free to contribute to the project and Microsoft has made available both the binary and full
source code versions of the Toolkit. As you will see, this Toolkit will become instrumental to the
FitnessTrackerPlus application and you will need to become very familiar with a majority of the con-
trols that are included in the Toolkit.

As you develop FitnessTrackerPlus, you will utilize the AutoCompleteBox, DockPanel, WrapPanel,
Accordion, Charting, TimePicker, TimeUpDown, and all of the available themes that have been gen-
erated for the Toolkit. Of course, a host of third-party toolkits is readily available from manufactures

534045c02.indd 32 3/13/10 4:53:05 PM

Design ❘ 33

such as Infragistics, Telerik, and ComponentArt. Many of these third-party libraries provide similar
controls or even more advanced versions of the ones available in the toolkit. When developing your
own line-of-business solutions, you may find that a third-party toolkit is a better choice for adding
rich Silverlight controls to your user interface. For the FitnessTrackerPlus application, the Silverlight
Toolkit provides a benefit that these others simply can’t beat — price. The Toolkit is 100 percent
free to use and even modify if you wish. It is tough to beat free, and that is why I recommend the
use of the Toolkit throughout this book. Now that you have some background on the benefits of the
Toolkit, it’s time to look at one of its largest features, themes, in a little more detail.

Providing Users with Multiple Themes

When I first started programming, I was very much interested in video game programming. I pur-
chased every single book on creating video games in C++ and DirectX that hit the shelf. I was com-
pletely convinced that by reading these and understanding the fundamentals of 3D graphics, I too
could create a video game. Unfortunately there is a side of video game programming that I simply
neglected to think about during all my excitement, or perhaps chose to ignore because it wasn’t that
important in line of business applications at the time. The ugly side of video game development was
not an impossible-to-understand API, or even matrix multiplication and pixel shading algorithms.
Those things I had a chance of actually learning although it might take a considerable amount of
time. The aspect of game development that I had underestimated was graphics. I’m not talking
about creating the next Halo here; I’m talking about something as simple as Pac-Man. I simply can-
not draw video game artwork. At that point, I realized something important that would apply for
years to come when creating user interfaces, especially in line of business applications. I am not a
designer. I am a developer period. Despite this fact I don’t long for the days when gray boring MFC
and Visual Basic forms development were the norm and completely acceptable to clients. I actually
enjoy the fact that user interfaces have taken a giant step graphically. This is why I was so excited to
see the new prebuilt themes that were added to the Silverlight Toolkit. Don’t get me wrong — there is
no substitution for a professional designer, and you may find that you can create slick user interfaces
as easily as any professional designer can. I, however, find the new themes a great way to create a
decent-looking user interface without having to recruit the help of a designer, at least not right away.

The requirements for the FitnessTrackerPlus application state that users should be able to select from
several available themes. The Toolkit offers 11 themes to choose from so you will be utilizing these
as the starting point for styling of the user interface. If you have an artistic ability, you can feel free
to alter these or perhaps even add some new themes as you are working on the application. To sat-
isfy the theme requirement, you will be providing users the ability to select from available themes on
the fitness dashboard page. This page will be available to the users after a successful logon. You can
utilize the new themes in several different ways. The easiest way to add theme support is to wrap
existing controls in your XAML with one of the prebuilt theme tags. This can be done by first add-
ing a reference to the main theming DLL found in Microsoft.Windows.Controls.Theming. This
DLL is required when using any of the themes included in the Toolkit. In addition to this reference,
you will need to add references to all of the themes that you wish to make use of. You will be mak-
ing all of the themes available to your users in FitnessTrackerPlus so you should add references in the
project to all of the following themes:

Microsoft.Windows.Controls.Theming.BubbleCream➤➤

Microsoft.Windows.Controls.Theming.BureauBlack➤➤

534045c02.indd 33 3/13/10 4:53:05 PM

34 ❘ ChaPter 2 PrePare to Be PoPular

Microsoft.Windows.Controls.Theming.BureauBlue➤➤

Microsoft.Windows.Controls.Theming.ExpressionDark➤➤

Microsoft.Windows.Controls.Theming.ExpressionLight➤➤

Microsoft.Windows.Controls.Theming.RainierOrange➤➤

Microsoft.Windows.Controls.Theming.RainierPurple➤➤

Microsoft.Windows.Controls.Theming.ShinyBlue➤➤

Microsoft.Windows.Controls.Theming.ShinyRed➤➤

Microsoft.Windows.Controls.Theming.TwilightBlue➤➤

Microsoft.Windows.Controls.Theming.WhistlerBlue➤➤

With all of the references added, you can see the various themes in action by adding the appropriate
namespace definitions and wrapping some of the various Silverlight controls with the various theme
tags that are available. Listing 2-5 demonstrates a simple example of the ShinyRed, ShinyBlue,
BureauBlack, and BubbleCream themes being applied against some basic Silverlight controls such
as the Slider, TextBox, Calendar, and Button.

listing 2-5: MainPage.xaml (located in the BasicThemingExample project)

<UserControl x:Class=”BasicThemingExample.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:controls=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls”
 xmlns:shiny_red=”clr-namespace:System.Windows.Controls.Theming;
assembly=System.Windows.Controls.Theming.ShinyRed”
 xmlns:shiny_blue=”clr-namespace:System.Windows.Controls.Theming;
assembly=System.Windows.Controls.Theming.ShinyBlue”
 xmlns:bubble_cream=”clr-namespace:System.Windows.Controls.Theming;
assembly=System.Windows.Controls.Theming.BubbleCreme”
 xmlns:bureau_black=”clr-namespace:System.Windows.Controls.Theming;
assembly=System.Windows.Controls.Theming.BureauBlack”>
<Grid x:Name=”LayoutRoot”>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <shiny_blue:ShinyBlueTheme Grid.Column=”0” Grid.Row=”0”>
 <StackPanel>
 <StackPanel Orientation=”Horizontal”>
 <Button Content=”Shiny Blue Button” />
 <TextBox Margin=”10,0,0,0” Width=”200” Text=”Styled TextBox” />

534045c02.indd 34 3/13/10 4:53:05 PM

Design ❘ 35

 </StackPanel>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”Slider” />
 <Slider Margin=”10,0,0,0” Maximum=”100” Minimum=”0”
Value=”0” />
 </StackPanel>
 <controls:Calendar />
 </StackPanel>
 </shiny_blue:ShinyBlueTheme>
 <shiny_red:ShinyRedTheme Grid.Column=”1” Grid.Row=”0”>
 <StackPanel>
 <StackPanel Orientation=”Horizontal”>
 <Button Content=”Shiny Red Button” />
 <TextBox Margin=”10,0,0,0” Width=”200” Text=”Styled TextBox” />
 </StackPanel>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”Slider” />
 <Slider Margin=”10,0,0,0” Maximum=”100” Minimum=”0”
Value=”0” />
 </StackPanel>
 <controls:Calendar />
 </StackPanel>
 </shiny_red:ShinyRedTheme>
 <bubble_cream:BubbleCremeTheme Grid.Column=”0” Grid.Row=”1”>
 <StackPanel>
 <StackPanel Orientation=”Horizontal”>
 <Button Content=”Bubble Cream Button” />
 <TextBox Margin=”10,0,0,0” Width=”200” Text=”Styled TextBox” />
 </StackPanel>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”Slider” />
 <Slider Margin=”10,0,0,0” Maximum=”100” Minimum=”0”
Value=”0” />
 </StackPanel>
 <controls:Calendar />
 </StackPanel>
 </bubble_cream:BubbleCremeTheme>
 <bureau_black:BureauBlackTheme Grid.Column=”1” Grid.Row=”2”>
 <StackPanel>
 <StackPanel Orientation=”Horizontal”>
 <Button Content=”Bureau Black Button” />
 <TextBox Margin=”10,0,0,0” Width=”200” Text=”Styled TextBox” />
 </StackPanel>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”Slider” />
 <Slider Margin=”10,0,0,0” Maximum=”100” Minimum=”0”
Value=”0” />
 </StackPanel>
 <controls:Calendar />
 </StackPanel>
 </bureau_black:BureauBlackTheme>
</Grid>
</UserControl>

534045c02.indd 35 3/13/10 4:53:05 PM

36 ❘ ChaPter 2 PrePare to Be PoPular

Running this example will leave you with the screen shown in Figure 2-8.

Figure 2-8

Although this is one way to utilize the new themes in the Toolkit, it is not terribly useful for the
application that you will be building in this book. Your users will need the ability to switch themes
at any point they are using the application. The preceding method of theming can be utilized by
wrapping all the controls of FitnessTrackerPlus into a selected theme, but there is no way to change
the theme because it is declared in XAML only.

Implicit Styling

A new addition to Silverlight 4 is the concept of Implicit Styling. This powerful new feature allows
you to create a single style and apply it to all controls of a certain type. For example, several Button
controls were added to a StackPanel in the following code along with both an implicit style decla-
ration and an explicit style declaration that will only affect one of the Button controls.

listing 2-6: MainPage.xaml (located in the ImplicitStylingExample project)

<UserControl x:Class=”ImplicitStylingExample.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”

534045c02.indd 36 3/13/10 4:53:06 PM

Design ❘ 37

 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”>

 <Grid x:Name=”LayoutRoot” Background=”White”>
 <Grid.Resources>
 <Style TargetType=”Button”>
 <Setter Property=”Background” Value=”Green”/>
 <Setter Property=”Foreground” Value=”Blue”/>
 <Setter Property=”FontWeight” Value=”Bold”/>
 <Setter Property=”Width” Value=”200” />
 <Setter Property=”Height” Value=”60” />
 <Setter Property=”Margin” Value=”10” />
 </Style>
 <Style x:Key=”ExplicitButtonStyle” TargetType=”Button”>
 <Setter Property=”Background” Value=”Blue”/>
 <Setter Property=”Foreground” Value=”Red”/>
 <Setter Property=”Width” Value=”300” />
 <Setter Property=”Height” Value=”100” />
 </Style>
 </Grid.Resources>
 <StackPanel>
 <Button Content=”Implicitly Styled” />
 <Button Content=”Implicitly Styled” />
 <Button Content=”Implicitly Styled” />
 <Button Content=”Explicitly Styled” Style=”{StaticResource
ExplicitButtonStyle}” />
 </StackPanel>
 </Grid>
</UserControl>

As you can see, a Style has been declared without a key defined that targets Button Controls. With
the new Implicit Styling feature, all Button controls that are part of the Grid control will automati-
cally inherit this style unless an explicit style declaration is added to the Button control. Figure 2-9
shows the first three Button controls all have the same Width, Height, Margin, Background, and
Foreground property values whereas the lone Explicitly Styled Button control differs.

Dynamic Theme Selection

The new Implicit Styling feature in Silverlight 4 is instrumental in allowing you a quick and easy
way to let your users dynamically select an overall theme for the application. Previously, you saw
that in order to use the Toolkit themes, you had to wrap all of your application controls with one
of the predefined theme tags in XAML. In the latest version of the Toolkit, all of these themes have
implicit styles set for all controls; dynamically changing the current theme is as simple as removing
the current theme, adding a new instance of the theme the user is selecting and setting the theme’s
Content property to the child controls of your application. Let’s take a look at an example that
shows this in action.

534045c02.indd 37 3/13/10 4:53:06 PM

38 ❘ ChaPter 2 PrePare to Be PoPular

Figure 2-9

For starters you should create a new Silverlight Application project and add a new UserControl
called Controls.xaml. Listing 2-7 shows the XAML code required for this, and as you can see it
simply adds several Silverlight controls with no Style properties set.

listing 2-7: Controls.xaml (located in the DynamicStylingExample project)

<UserControl x:Class=”DynamicStylingExample.Controls”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:d=”http://schemas.microsoft.com/expression/blend/2008”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”
 xmlns:data=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data”
 xmlns:controls=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls”>

 <StackPanel x:Name=”ControlsRoot”>
 <StackPanel Orientation=”Horizontal” Margin=”0,10”>
 <Button Content=”Button Control” />
 <TextBox Margin=”10,0,0,0” Width=”200”
Text=”Styled TextBox” />
 </StackPanel>
 <StackPanel Orientation=”Horizontal” Margin=”0,10”>
 <Slider Margin=”10,0,0,0” Maximum=”100” Minimum=”0”
Value=”0” />

534045c02.indd 38 3/13/10 4:53:06 PM

Design ❘ 39

 </StackPanel>
 <data:DataGrid x:Name=”CustomFoodsGrid” Margin=”0,10” />
 <controls:Calendar Margin=”0,10” />
 </StackPanel>
</UserControl>

Now in the MainPage.xaml file you simply add a ComboBox control that will give the user the abil-
ity to select a theme. In addition to this, Listing 2-8 adds an instance of the Controls class with no
theme set initially.

listing 2-8: MainPage.xaml (located in the DynamicStylingExample project)

<UserControl x:Class=”DynamicStylingExample.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:dynamic=”clr-namespace:DynamicStylingExample”>
 <Grid x:Name=”LayoutRoot”>
 <StackPanel x:Name=”MainPanel”>
 <ComboBox x:Name=”ThemeList”>
 <ComboBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding ThemeName}” />
 </DataTemplate>
 </ComboBox.ItemTemplate>
 </ComboBox>
 <dynamic:Controls x:Name=”Controls” />
 </StackPanel>
 </Grid>
</UserControl>

Before writing any code to support the theme switching, you first need to add references to all of the
theme DLL files that you want to support. Once this is done, you can start populating the ComboBox
with a list of available themes. In previous versions of Silverlight you were required to make use of
the ImplicitStyleManager class to dynamically change the current theme. Since Implicit Styles are
supported now by default in Silverlight 4, the ImplicitStyleManager class has been removed from
the Silverlight Toolkit.

In the code behind, you need to first populate the ComboBox with a class that represents the theme to
be selected. You should add a ThemeSelector class with two properties: a string to hold the name
of the theme and a ContentControl property to hold an instance of the theme object to be used. When
created in the code behind, all the theme objects are instantiated as ContentControl objects. The
following code shows the ThemeSelector class that is used.

public class ThemeSelector
{
 public string ThemeName { get; set; }
 public ContentControl Theme { get; set; }
}

Code snippet MainPage.xaml.cs located in the DynamicStylingExample project

534045c02.indd 39 3/13/10 4:53:06 PM

40 ❘ ChaPter 2 PrePare to Be PoPular

Once you have the class defined, you need to add a new method to populate the ComboBox control
with all the available themes. In the following code, the LoadThemeList method creates a new
List<ThemeSelector> object and adds new instances of the class using the System.Windows
.Controls.Theming object for the Theme property. This method is called in the constructor of
the MainPage class so the list is populated and available to the user when the application is run.

private void LoadThemeList()
{
 List<ThemeSelector> themes = new List<ThemeSelector>();

 themes.Add(new ThemeSelector { ThemeName = “BubbleCreme”,
Theme = new BubbleCremeTheme() });
 themes.Add(new ThemeSelector { ThemeName = “BureauBlack”,
Theme = new BureauBlackTheme() });
 themes.Add(new ThemeSelector { ThemeName = “BureauBlue”,
Theme = new BureauBlueTheme() });
 themes.Add(new ThemeSelector { ThemeName = “ExpressionDark”,
Theme = new ExpressionDarkTheme() });
 themes.Add(new ThemeSelector { ThemeName = “ExpressionLight”,
Theme = new ExpressionLightTheme() });
 themes.Add(new ThemeSelector { ThemeName = “RainierOrange”,
Theme = new RainierOrangeTheme() });
 themes.Add(new ThemeSelector { ThemeName = “RainierPurple”,
Theme = new RainierPurpleTheme() });
 themes.Add(new ThemeSelector { ThemeName = “ShinyBlue”,
Theme = new ShinyBlueTheme() });
 themes.Add(new ThemeSelector { ThemeName = “ShinyRed”,
Theme = new ShinyRedTheme() });
 themes.Add(new ThemeSelector { ThemeName = “TwilightBlue”,
Theme = new TwilightBlueTheme() });
 themes.Add(new ThemeSelector { ThemeName = “WhistlerBlue”,
Theme = new WhistlerBlueTheme() });

 ThemeList.ItemsSource = themes;
}

Code snippet MainPage.xaml.cs located in the DynamicStylingExample project

With the ComboBox populated you now simply need to handle the SelectionChangedEvent and
switch the currently displayed theme. In the following code, the selected theme is extracted from the
ComboBox selection. Next, the Content property is set to a new instance of the Controls object that
contains all of the Silverlight controls that need to be themed in this application. Finally, the existing
Controls object is removed from the visual tree and the new themed version of the Controls object
is added in its place. This process is repeated every time the user selects a new theme.

private void ThemeList_SelectionChanged(object sender,
SelectionChangedEventArgs e)
{
 ContentControl theme = ((sender as ComboBox).SelectedItem as
ThemeSelector).Theme;
 theme.Content = new Controls();

 MainPanel.Children.RemoveAt(1);

534045c02.indd 40 3/13/10 4:53:06 PM

Design ❘ 41

 MainPanel.Children.Add(theme);
}

Code snippet MainPage.xaml.cs located in the DynamicStylingExample project

As you can see, there really isn’t much to it other than creating an instance of the desired theme object,
setting the Content property to all of the controls you need to display, and finally adding that newly
themed content back into the visual control tree. Figure 2-10 shows the theme selection options that
the user now has.

Figure 2-10

Data Access Layer

There are several different ways to approach the data access layer when building N-Tier Silverlight
applications. Of course, you could use the traditional method of creating custom business objects
that interact with a database layer based on ADO.NET. This has been one of the standard methods
of data access layer for years now in ASP.NET applications. Providing you utilize WCF- or ASMX-
based web services to transport your business objects, you could continue to use an ADO.NET data
access layer just fine. A properly designed layer usually lets you change the underlying database eas-
ily without making any changes to the business objects. This along with support for multiple data-
base vendors has made ADO.NET a powerful platform for the data access layer. In recent years,
there has been a bit of a shift in data access technology away from straight ADO.NET programming

534045c02.indd 41 3/13/10 4:53:06 PM

42 ❘ ChaPter 2 PrePare to Be PoPular

and into the world of object relational mapping tools or ORM as a means of data access. Countless
ORM tools are available for .NET programming and it would take an entire book to cover even
some of them in any depth. I will, however, be covering the basics of two ORM technologies from
Microsoft that have been optimized specifically for easy integration into Silverlight and ASP.NET
application development.

LINQ to SQL

Microsoft’s first foray into the ORM space was LINQ to SQL. This technology provides a simple
drag-and-drop interface to create a data access layer. With LINQ to SQL, you can simply open a
connection to your database and drag and drop tables onto the design form creating extensible enti-
ties that have built-in support for CRUD operations. In order to get started using LINQ to SQL, you
need to add a new LINQ to SQL Classes item to your project, as shown in Figure 2-11.

Figure 2-11

In this example, a Foods.dbml file is added to the project. If you expand this file you will see a
Foods.dbml.layout file and a Foods.designer.cs file. The layout file is the visual form where you
drag table definitions. The designer file includes the generated entity classes that are automatically

534045c02.indd 42 3/13/10 4:53:06 PM

Design ❘ 43

built when you drag a table onto the form. These entity classes are marked as partial so extend-
ing them is as simple as creating an additional class file and ensuring that your extension class is
marked with the same class name as the entity and the partial declaration precedes it. The power
of using a tool like this is that you no longer have to create custom business objects along with
ADO.NET plumbing code in order to provide basic CRUD operations for your entities. With the
.dbml file open, you should open the FitnessTrackerPlus.mdf file in the App_Data folder of the
LINQtoSQLSample project and add the foods table to the form as shown in Figure 2-12.

Figure 2-12

If you take a look at the Foods.designer.cs file in the ASP.NET project now, you will see that entity
classes have been generated for foods table that was dragged onto the form.

If you examine the Foods.designer.cs file you will see that LINQ to SQL has created a partial class
that really works well as a complete business object for the food type. Every column in the table is
represented by a property, complete with an implementation of INotifyPropertyChanged, which
will allow controls such as the DataGrid to automatically update its current values when these
properties are changed for the food object. If the table had any foreign key relationships, they would
have been marked with the Association attribute. This attribute provides you with the capability
to quickly access the full object representing the association without your having to create a separate
SQL query. Earlier I discussed how the classes generated by LINQ to SQL are extensible. In addition
to the associations, several extensibility methods are generated for you that can easily be overloaded
in your own partial class implementations. The following code shows the extensibility methods that
are generated for the Foods.designer.cs file.

534045c02.indd 43 3/13/10 4:53:07 PM

44 ❘ ChaPter 2 PrePare to Be PoPular

#region Extensibility Method Definitions
 partial void OnLoaded();
 partial void OnValidate(System.Data.Linq.ChangeAction action);
 partial void OnCreated();
 partial void OnidChanging(int value);
 partial void OnidChanged();
 partial void OnnameChanging(string value);
 partial void OnnameChanged();
 partial void OncaloriesChanging(System.Nullable<double> value);
 partial void OncaloriesChanged();
 partial void OnproteinChanging(System.Nullable<double> value);
 partial void OnproteinChanged();
 partial void OncarbohydrateChanging(System.Nullable<double> value);
 partial void OncarbohydrateChanged();
 partial void OnfatChanging(System.Nullable<double> value);
 partial void OnfatChanged();
#endregion

Code snippet Foods.designer.cs located in the LINQtoSQLSample project

By overloading the OnValidate method, you can easily add custom validation logic to the generated
entity. Let’s say a user has created a new custom food that needs to be added to the database. You
would want to ensure that a food name has been entered on the object. The OnValidate method pro-
vides a System.Data.Linq.ChangeAction enumeration that will tell you what operation is about to
be performed on the object. An example of this is illustrated in the following code:

partial void OnValidate(ChangeAction action)
{
 If (!ValidateFood(this))
 throw new ApplicationException(“Validation failed for custom food”);
}

In this example, a ValidateFood method is called and, if validation fails, an
ApplicationException is thrown preventing the new food from being persisted to the database.

In order to access these entity classes you need to make use of the generated DataContext object.
Once you create an instance of this object, you can easily use LINQ queries to access the requested
data. The beauty of this is that the DataContext takes care of opening and closing the database
connection as well as generating all of the necessary T-SQL statements that are required to retrieve
the requested data. This is the most significant feature of using one of these newer ORM technolo-
gies as your data access layer. Instead of creating complex SQL queries, you can concentrate on
requesting data in a much more object-oriented manner. For example, with a relatively simple LINQ
query, you can easily retrieve all of the foods in the database that include the word “RICE”:

public List<food> SearchFoods()
{
 List<food> foods = new List<food>();

 using (FoodsDataContext context = new FoodsDataContext())
 {
 var result = (from f in context.foods
 where f.name.ToUpper().Contains(“RICE”)

534045c02.indd 44 3/13/10 4:53:07 PM

Design ❘ 45

 select f);

 foods = result.ToList<food>();
 }

 return foods;
}

Code snippet FoodService.svc.cs located in the LINQtoSQLSample project

Attempting to do this in a stored procedure or embedded T-SQL would not have been nearly as straight-
forward, depending on your familiarity with T-SQL syntax. You are, however, most likely familiar
with the .NET runtime methods that are available, and being able to make use of String methods
such as IndexOf in order to perform data queries is an extremely powerful function of LINQ.

Updating data in LINQ to SQL is just as easy as querying data. With just a few lines of code, you
can save business object changes to the database. All you need to do is update the object properties
and call the SubmitChanges method of the DataContext, as follows:

public void UpdateFoods()
{
 using (FoodsDataContext context = new FoodsDataContext())
 {
 food firstFood = (from f in context.foods
 where f.id == 1
 select f).First<food>();

 firstFood.calories = 100;
 context.SubmitChanges();
 }
}

Code snippet FoodService.svc.cs located in the LINQtoSQLSample project

In a disconnected scenario such as when a Silverlight client calls business logic in web services, the
preceding SubmitChanges call will not work. The DataContext does not automatically handle
change tracking in disconnected scenarios. In order to have this working in a Silverlight client, you
will need to add a call to the Attach method of the DataContext before submitting the changes.
LINQ to SQL supports optimistic concurrency to perform database updates. There are a couple of
options to consider when handling concurrency issues with LINQ to SQL. If you already have a
timestamp field in your database tables, LINQ to SQL will use it when handling concurrency issues.
In this case, you would pass the value of True when calling the Attach method and if a conflict
occurred, a ChangeConflictException would be thrown. An example of this is demonstrated in
the following code:

public bool UpdateCustomFood(food customFood)
{

 bool result = false;

 using (DataLayerDataContext context = new DataLayerDataContect())
 {

534045c02.indd 45 3/13/10 4:53:07 PM

46 ❘ ChaPter 2 PrePare to Be PoPular

 context.foods.Attach(customFood, true);

 try
 {
 context.SubmitChanges();
 result = true;
 }
 catch (ChangeConflictException e)
 {
 // Handle the change conflict here
 }
 return result;
 }
}

Now if you did not have a timestamp available, you would have a couple of choices. You can either
pass in both a copy of the new object along with the original or you can choose to have LINQ to
SQL ignore concurrency altogether. Here is the same update method that sends back a copy of the
original object along with the updated version:

public bool UpdateCustomFood(Food original, Food updated)
{

 bool result = false;

 using (DataLayerDataContext context = new DataLayerDataContect())
 {
 context.foods.Attach(original, false);

 original.name = updated.name;
 try
 {
 context.SubmitChanges();
 result = true;
 }
 catch (ChangeConflictException e)
 {
 // Handle the change conflict here
 }
 return result;
 }
}

In this example, the parameter to the Attach method is false, which tells LINQ to SQL that you are
attaching a copy of the original, unmodified object.

What if you decide that you don’t want to worry about concurrency? In the FitnessTrackerPlus appli-
cation, concurrency really isn’t an issue as every operation is on a single per user basis. There are
no cases where multiple users will be modifying the same record. In this specific scenario it is prob-
ably best to have LINQ to SQL ignore concurrency issues completely. If you look at the properties
for the database table columns in the DBML designer you will see a property called UpdateCheck.
You can select all of the columns in the table and set this value to Never. This will tell LINQ to

534045c02.indd 46 3/13/10 4:53:07 PM

Design ❘ 47

SQL to ignore all concurrency checks. Although you can get away with this, for FitnessTrackerPlus
most line of business applications will have to deal with concurrency issues so in your own solu-
tions you will most likely leave this property alone and either add a timestamp field to your database
table or pass in both the original and modified versions of the objects to the Attach method of the
DataContext before calling SubmitChanges.

Okay, so this LINQ to SQL thing looks great as a potential data access layer. You may be asking
what the catch is. Well the catch is that there is only one provider for LINQ to SQL and that is
SQL Server. Although it seemed like a future version of LINQ to SQL was going to be extensible
and allow for third-party driver support, this did not happen. Because the extensibility modifica-
tions were never made, LINQ to SQL even now supports only working with SQL Server databases.
Obviously, this is a large item to consider when designing your application; if you need a data access
layer that supports Oracle or MySQL or any other database for that matter, you will not be able to
utilize this great tool.

Entity Framework

The Entity Framework is the latest data access layer technology available for .NET programming.
There are many important benefits to the Entity Framework, not the least of which is the ability to
change the underlying data store to something other than SQL Server. Third-party database support
is starting to gain traction and you can find Entity Framework providers for Oracle, DB2, MySQL,
and others at the time of this writing. It should also be noted that although the official response
from Redmond is that LINQ to SQL will continue to be supported and enhancements to the plat-
form will be made based on customer feedback, Microsoft has planned many of their new .NET 4
technologies around the Entity Framework. Future support for a platform should always be some-
thing that you consider before making any investment in a technology platform, especially your data
access layer. As you try to understand the Entity Framework features, it’s helpful to have a quick
comparison of the features that LINQ to SQL offers to determine which is the correct technology
choice for your application. Table 2-2 covers some of the main differences between LINQ to SQL
and the Entity Framework.

table 2-2: LINQ to SQL versus Entity Framework

Feature linQ to sQl entity Framework

Database

Support

SQL Server SQL Server, Oracle, DB2, Sybase, MySQL and

any other third-party database through the use

of custom provider

Mapping

Features

1:1 table to entity mapping Ability to map entities across multiple tables,

providing complete separation from underlying

database schema

N:N No support for N:N relation-

ships, requires intermediate

table for support

Support for N:N relationships

Inheritance Full support Full support

534045c02.indd 47 3/13/10 4:53:07 PM

48 ❘ ChaPter 2 PrePare to Be PoPular

Getting started with the Entity Framework is very similar to using LINQ to SQL:

 1. Create a new Silverlight Application project and from the main ASP.NET web project, add
a new item to the project using the ADO.NET Entity Data Model template, as shown in
Figure 2-13. The Entity Data Model Wizard appears asking you to choose from the option of
generating from a database or creating a new empty model. This example generates from the
database.

Figure 2-13

 2. Select database connection information and decide if the connection string should be stored
in the web.config file. Figures 2-14 and 2-15 outline both of these steps. In this case, just go
ahead and connect to the FitnessTrackerPlus.mdf file located in the App_Data folder of the
project. You are presented with the option to choose the database objects that you wish to
include in the data model, as shown in Figure 2-16.

534045c02.indd 48 3/13/10 4:53:07 PM

Design ❘ 49

Figure 2-14

Figure 2-15

534045c02.indd 49 3/13/10 4:53:07 PM

50 ❘ ChaPter 2 PrePare to Be PoPular

Figure 2-16

 3. You can expand the table tree item and choose from any of the existing tables in the database.
For this example you only have one table called foods, so check that table option.

 4. Click Finish. Visual Studio will then create a new FitnessTrackerPlus.edmx file that includes
the tables you chose in the previous step. Figure 2-17 shows the designer view with the foods
table added.

Figure 2-17

534045c02.indd 50 3/13/10 4:53:08 PM

Design ❘ 51

Performing CRUD-based operations on the entities defined is very similar to using LINQ to SQL.
When working in a disconnected environment such as web services with Silverlight, you need to
attach entities that are being updated or removed before saving changes. Listing 2-4 shows a very
basic WCF web service created with the “Silverlight Enabled WCF Service” template that supports
data retrieval, updating, creation, and deletion with the Entity Framework.

listing 2-9: FoodService.svc.cs (located in the EntityFrameworkSample project)

using System;
using System.Linq;
using System.Runtime.Serialization;
using System.ServiceModel;
using System.ServiceModel.Activation;
using System.Collections.Generic;

namespace EntityFrameworkSample.Web
{
 [ServiceContract(Namespace = “”)]
 [AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
 public class FoodService
 {
 FitnessTrackerPlusEntities model = new
FitnessTrackerPlusEntities();

 [OperationContract]
 public List<food> GetAllFoods()
 {
 return model.foods.ToList();
 }

 [OperationContract]
 public void UpdateFood(food customfood, int calories)
 {
 model.AttachTo(“foods”, customfood);
 customfood.calories = calories;

 model.SaveChanges();
 }

 [OperationContract]
 public void CreateFood(food customfood)
 {
 model.AddTofoods(customfood);
 }

 [OperationContract]
 public void DeleteFood(food customfood)
 {
 model.AttachTo(“foods”, customfood);
 model.DeleteObject(customfood);
 }
 }
}

534045c02.indd 51 3/13/10 4:53:08 PM

52 ❘ ChaPter 2 PrePare to Be PoPular

The next section will cover some more detailed examples showing elements of the Entity Framework,
including the new ADO.NET Data Services. These Data Services act as an additional layer on top of
the Entity Framework to provide a full business logic framework on top of WCF web services.

The Entity Framework is an incredibly large framework that works hard to allow you, as the pro-
grammer, to perform your data access work against a conceptual model rather than worry about the
specifics of the underlying database schema and technology. I cannot begin to cover all of the details of
using the Entity Framework in this book and there has been extensive debate online about whether
or not the Entity Framework is a better ORM technology than LINQ to SQL. Obviously, if you
need to support any database other than SQL Server then the answer is clear. If you are worried
only about supporting SQL Server, however, the answer is not so cut and dry. In the “Solution” sec-
tion of this chapter, I make a technology choice for the FitnessTrackerPlus application and describe
my reasoning behind that decision.

If you are interested in a very in-depth look at both technologies, consider taking
Professional ADO.NET 3.5 with LINQ and the Entity Framework by Wrox Press
for a read. This book has much more in-depth information on both frameworks,
including topics that are out of scope for this particular book.

The new exception starts a new stack trace starting from the exact spot where you
threw it, making it appear as though this is where the error actually originated

With the latest enhancements to the Entity Framework, it may seem like Microsoft is pushing hard
to make the decision for developers easier, but they have not yet dropped support for LINQ to SQL
and have even added complete support for it in their new WCF RIA Services platform, so it does not
seem like the debate is going to end anytime soon. For now, you need to review what your database
schema looks like and what database platform choice you have made before determining which
data access layer or ORM technology you will use in your own projects. Of course, if all else fails,
you can always use the traditional ADO.NET objects such as DataReaders, stored procedures, and
other .NET 2.0 data access concepts.

Business Logic Layer

When designing the business logic layer of the logical tier there are a myriad of technologies at your
disposal. You could choose to write your business layer using traditional ASMX web services, WCF
web services, ADO.NET Data Services, or even WCF RIA Services, which is the latest addition to
the .NET stack of business logic technologies. Regardless of the technology used to create your busi-
ness layer you will have to make your calls to that layer asynchronously. Silverlight does not support
synchronous calls to web services. This introduces some new design challenges that force you to be
careful of relying on dependent web service calls. Let’s take a look at how you can utilize each of
these technologies from a Silverlight application.

534045c02.indd 52 3/13/10 4:53:08 PM

Design ❘ 53

ASMX Web Services

If you have written a traditional ASP.NET-based website in the past, then at one point in time you
probably had to interact with an ASMX-based web service. In ASP.NET, calls to these web services
are synchronous in nature and making use of them is as simple as adding a web reference to the
service in your project. Visual Studio makes this relatively painless and creates a proxy class that
handles all of the plumbing code required to actually make the web service call. Making use of
these services in Silverlight, however, is slightly more complicated than in a traditional ASP.NET
code behind page. In a Silverlight project, the web reference has been changed to a service refer-
ence, and the calls to the service can no longer be made synchronously. Listing 2-10 demonstrates
a simple web service called ExerciseService that returns a list of available exercises to the caller.
Immediately following this is Listing 2-11, which highlights the Exercise business object being
used in the web service.

listing 2-10: ExerciseService.asmx.cs (located in the ASMXWebServiceCall project)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Services;

namespace ASMXWebServiceCall.Web.Services
{
 /// <summary>
 /// Summary description for ExerciseService
 /// </summary>
 [WebService(Namespace = “http://www.fitnesstrackerplus.com/”)]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 [System.ComponentModel.ToolboxItem(false)]
 // To allow this Web Service to be called from script, using ASP.NET
AJAX,uncomment the following line.
 // [System.Web.Script.Services.ScriptService]
 public class ExerciseService: System.Web.Services.WebService
 {
 [WebMethod]
 public List<Exercise> GetAllExercises()
 {
 return new List<Exercise>()
 {
 new Exercise(1,1,”Barbell Bench Press”),
 new Exercise(2,1,”Treadmill”),
 new Exercise(3,2,”Jogging 5 Miles”),
 new Exercise(4,2,”Baseball Practice”)
 };
 }
 }
}

534045c02.indd 53 3/13/10 4:53:08 PM

54 ❘ ChaPter 2 PrePare to Be PoPular

listing 2-11: Exercise.cs (located in the ASMXWebServiceCall project)

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace ASMXWebServiceCall.Services
{
 public class Exercise
 {
 public int ExerciseID { get; set; }
 public int UserID { get; set; }
 public string ExerciseName { get; set; }

 public Exercise() {};

 public Exercise(int id, int user_id, string name)
 {
 this.ExerciseID = id;
 this.UserID = user_id;
 this.ExerciseName = name;
 }
 }
}

After adding a service reference to the preceding web service in your Silverlight project, you will see
a reference.cs file, which represents the proxy class that you will be using to call the service. In the
case of ASMX web services, the proxy class automatically takes care of creating a version of the web
service call that supports asynchronous calling. There is barely any additional work required from
you to get this working. The only major difference is that you will need to attach an event handler
to the completed event for the method that you are attempting to call. Continuing with the previous
example, Listing 2-12 shows the asynchronous call to the GetAllExercises method and displays
all the exercises returned in a DataGrid. Note how the asynchronous form of the method generated
for the client is called GetAllExercisesAsync.

listing 2-12: MainPage.xaml.cs (located in the ASMXWebServiceCall project)

using System;
using System.Collections.ObjectModel;
using System.Windows;
using System.Windows.Controls;
using ASMXWebServiceCall.Services;

namespace ASMXWebServiceCall
{

534045c02.indd 54 3/13/10 4:53:08 PM

Design ❘ 55

 public partial class MainPage: UserControl
 {
 public MainPage()
 {
 InitializeComponent();

 ExerciseServiceSoapClient client = new
ExerciseServiceSoapClient();

 // Setup an web service completion event before actually
 // calling the service

 client.GetAllExercisesCompleted += new
EventHandler<GetAllExercisesCompletedEventArgs>(client_
GetAllExercisesCompleted);
 client.GetAllExercisesAsync();
 }

#region Web Service Handlers

 private void client_GetAllExercisesCompleted(object sender,
GetAllExercisesCompletedEventArgs e)
 {
 // GetAllExercisesCompletedEventArgs contains an Error property
 // that can be checked before attempting to use the Result

 // The Result property contains all of the
 // retrieved exercise objects

 if (e.Error == null)
 {
 ObservableCollection<Exercise> exercises = e.Result as
ObservableCollection<Exercise>;
 ExerciseGrid.ItemsSource = exercises;
 }
 }

#endregion
 }
}

Note in the event handler that even though the web service is returning a generic List<Exercise>
object, the Silverlight proxy class has actually returned an ObservableCollection in the Result
property of the GetAllExercisesCompleted object, which can be used by controls such as the
DataGrid. In addition to the reference class generated, you will also see that a new file called
ServiceReferences.ClientConfig has been added to your project. This file sets up the SOAP
endpoint bindings that Silverlight will utilize to make the calls to the web service. Listing 2-13
shows the binding information that has been automatically created for you.

534045c02.indd 55 3/13/10 4:53:08 PM

56 ❘ ChaPter 2 PrePare to Be PoPular

listing 2-13: ServiceReferences.ClientConfig (located in the ASMXWebServiceCall project)

<configuration>
<system.serviceModel>
 <bindings>
 <basicHttpBinding>
 <binding name=”ExerciseServiceSoap” maxBufferSize=”2147483647”
maxReceivedMessageSize=”2147483647”>
 <security mode=”None” />
 </binding>
 </basicHttpBinding>
 </bindings>
 <client>
 <endpoint address=”http://localhost:1038/Services/ExerciseService.asmx”
binding=”basicHttpBinding” bindingConfiguration=”ExerciseServiceSoap”
contract=”ExerciseService.ExerciseServiceSoap” name=”ExerciseServiceSoap” />
 </client>
</system.serviceModel>
</configuration>

WCF Services

In addition to the traditional ASMX SOAP-based web services, Silverlight can also consume WCF
services. Consuming a WCF service in a Silverlight application involves many of the same techniques
described previously. Once you have installed the Silverlight developer tools, Visual Studio will have
made available a new service template that you can use to create WCF services that are ready to be
used with Silverlight. The new template is called the “Silverlight-enabled WCF service.” What this
template does is ensure that the service is created with the AspNetCompatibilityRequirements
attribute set to Allowed. This attribute enables ASP.NET compatibility mode. Without this option
enabled the WCF service will not have access to the HTTP pipeline. This means that your service
will not have access to the HTTPContext object, session state, or any of the other ASP.NET features
that are made available to traditional ASMX web services. In most cases, you will want to have
access to these objects from your services, especially the session state. This compatibility mode is
also required if you want to enable access to the ASP.NET authentication, authorization, or profile
services from Silverlight. In the FitnessTrackerPlus application, you will need to have access to all of
these items from your services so if you were to choose WCF as your solution for the business logic
layer, then this project template is the best way to create those services. Listing 2-14 shows the WCF
version of the ExerciseService that was created in the previous example:

listing 2-14: ExerciseService.svc.cs (located in the WCFServiceCall project)

using System;
using System.ServiceModel;
using System.ServiceModel.Activation;
using System.Collections.Generic;

namespace WCFServiceCall.Web.Services

534045c02.indd 56 3/13/10 4:53:09 PM

Design ❘ 57

{
 [ServiceContract(Namespace = “”)]
 [AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
 public class ExerciseService
 {
 [OperationContract]
 public List<Exercise> GetAllExercises()
 {
 // Just return an in-memory data store

 return new List<Exercise>()
 {
 new Exercise(1,1,”Barbell Bench Press”),
 new Exercise(2,1,”Treadmill”),
 new Exercise(3,2,”Jogging 5 Miles”),
 new Exercise(4,2,”Baseball Practice”)
 };
 }
 }
}

As you can see, there isn’t much different other than a few extra attribute declarations. However,
with WCF services you have much more flexibility in the actual data going across the wire than
you do with traditional ASMX-based web services. ASMX-based web services rely on SOAP mes-
sages being passed between the client and server and in most cases these messages are very verbose.
SOAP messages support an XML-based payload, which in and of itself requires additional band-
width for each service call. WCF offers several different options for output including binary, which
dramatically reduces the amount of traffic required for each service call. One important addition to
Silverlight 4 was the inclusion of binary WCF support, which means you can now officially create
binary WCF services and integrate them with a Silverlight client. WCF services with binary formatted
output can be an efficient solution for your business logic layer.

Now WCF services are not entirely without their own set of unique problems. One problem in par-
ticular, which can come up during the deployment of a WCF server especially in a shared hosting
environment, is errors involving multiple host name support. In cases where you have complete con-
trol of the server environment, you can work around this type of issue as you will have full control
over the IIS server. In a shared hosting environment, depending on how the hosting provider has
configured the IIS server, you could run into the following error when deploying the service:

“This collection already contains an address with scheme http. There can be at most
one address per scheme in this collection.”

This error can occur when the shared hosting provider is attempting to support your site being
accessed by multiple host names. One example of this is trying to use both FitnessTrackerPlus as
well as FitnessTrackerSilverlight as host names that point to the same site. The WCF service can
bind only to one of the available host names and without further configuration will give you this
error when attempting to access the service. Because you most likely will not have access to the IIS
server configuration, you need to devise an alternate solution. There are currently a couple of dif-
ferent ways to handle this problem. One solution involves creating a custom ServiceHostFactory

534045c02.indd 57 3/13/10 4:53:09 PM

58 ❘ ChaPter 2 PrePare to Be PoPular

and forcing the WCF service to make use of the factory upon its creation. Listing 2-15 shows the
WCF service with the additional ServiceHostFactory that is required for this implementation.

listing 2-15: ExerciseService.svc.cs: (located in the WCFServiceCallAlternateMethod project)

using System;
using System.ServiceModel;
using System.ServiceModel.Activation;
using System.Collections.Generic;

namespace WCFServiceCallAlternateMethod.Web.Services
{
 [ServiceContract(Namespace = “”)]
 [AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
 public class ExerciseService
 {
 [OperationContract]
 public List<Exercise> GetAllExercises()
 {
 // Return an in-memory database of exercises

 return new List<Exercise>()
 {
 new Exercise(1,1,”Barbell Bench Press”),
 new Exercise(2,1,”Treadmill”),
 new Exercise(3,2,”Jogging 5 Miles”),
 new Exercise(4,2,”Baseball Practice”)
 };
 }
 }

 public class ExerciseServiceHostFactory: ServiceHostFactory
 {
 protected override ServiceHost CreateServiceHost(Type serviceType,
Uri[] baseAddresses)
 {
 // Multiple Uri values declared, first one is for production,
 // second is for local debugging

 //Uri webServiceAddress = new
Uri(“http://FitnessTrackerPlus/services/exerciseservice.svc”);
 Uri webServiceAddress = new
Uri(“http://localhost:1049/services/exerciseservice.svc”);

 ServiceHost webServiceHost = new ServiceHost(serviceType,
webServiceAddress);
 return webServiceHost;
 }
 }
}

534045c02.indd 58 3/13/10 4:53:09 PM

Design ❘ 59

When running the preceding example, be sure to change the port number to the
port that is being used by your local development web server or the service will
not be found.The new exception starts a new stack trace starting from the exact
spot where you threw it, making it appear as though this is where the error actu-
ally originated

In addition to creating the custom ServiceHostFactory class, you also need to change the .svc file
to use this factory when creating an instance of the service, as shown Listing 2-16.

listing 2-16: ExerciseService.svc (located in the WCFServiceCallAlternateMethod project)

<%@ ServiceHost Language=”C#” Debug=”true”
Service=”WCFServiceCallAlternateMethod
.Web.Services.ExerciseService”
Factory=”WCFServiceCallAlternateMethod
.Web.Services.ExerciseServiceHostFactory” %>

Once you have successfully built the service, you can add a reference to it from your Silverlight proj-
ect. You must call the WCF service asynchronously just as was done in the preceding ASMX sample.
In the actual creation of the service client object, I have included a parameter to the constructor.
When you are implementing your application on a local machine, adding the service reference in the
project creates an endpoint in the ServiceReference.ClientConfig file that points to the localhost web
server. When you actually deploy the WCF service, that endpoint is no longer valid. Rather than add
multiple service references or try to coordinate between the live and local version when you debug,
you can simply pass the name of the endpoint that you wish to create in the constructor of the ser-
vice client.

One simple way to switch between the live and local versions of the service is to pass the binding
string into the constructor for the ExerciseServiceClient. This alternate constructor takes a string
pointing to the binding that should be used in the ServiceReference.ClientConfig file. This technique
is demonstrated in the following code where a static Globals class holds the two binding string
values.

ExerciseServiceClient client =
new ExerciseServiceClient(Globals.ExerciseServiceBinding);

client.GetAllExercisesCompleted += new
EventHandler<GetAllExercisesCompletedEventArgs>(client_GetAllExercisesCompleted);
client.GetAllExercisesAsync();]

Code snippet MainPage.xaml.cs located in the WCFServiceCallAlternateMethod project

The Globals class handles switching between the live and local bindings automatically by making
use of a conditional compiler statement. Listing 2-17 shows the Globals class.

534045c02.indd 59 3/13/10 4:53:09 PM

60 ❘ ChaPter 2 PrePare to Be PoPular

listing 2-17: Globals.cs (located in the WCFServiceCallAlternateMethod project)

namespace WCFServiceCallAlternateMethod
{
 public static class Globals
 {
#if DEBUG
 public static readonly string ExerciseServiceBinding =
“ExerciseServiceDebug”;
#else
 public static readonly string ExerciseServiceBinding =
“ExerciseServiceLive”;
#endif
 }
}

The second option you have for resolving the previous multiple host name error is to utilize a new
feature of .NET 3.5 called baseAddressPrefixFilters. When you add a Silverlight-enabled WCF
service to your web project, changes are made to the <system.serviceModel> configuration area of
the web.config file. In the serviceHostingEnvironment section, you can specify which host name you
wish to have the WCF service bind to. In the following code, a baseAddressPrefixFilters section
has been added to the web.config file that forces the service to bind to http://FitnessTrackerPlus.

<serviceHostingEnvironment aspNetCompatibilityEnabled=”true”>
 <baseAddressPrefixFilters>
 <add prefix=”http://localhost:1121/Services”/>
 <!- <add prefix=”http://FitnessTrackerPlus/Services”/> ->
 </baseAddressPrefixFilters>
</serviceHostingEnvironment>

Code snippet web.config located in the WCFServiceCallBaseAddressPrefix project

By just simply making use of the baseAddressPrefixFilter you can quickly set the appropriate
host name for the service depending on if you are running locally or on the production server. This
eliminates the need for a custom ServiceHostFactory implementation.

ADO.NET Data Services

Yet another possibility for the business logic layer is to make use of the new ADO.NET Data Services
framework. This new framework provides an easy way to create REST-based web services to your
client layers. These new services provide a wrapper around the existing REST-based functionality
in WCF to provide you with a REST-based protocol for accessing your data in the business object
layer. You can make use of these services with existing business objects or by wrapping entities cre-
ated from an ORM technology such as LINQ to SQL or the Entity Framework. In the WCF-based
solution outlined previously, it would be necessary to roll your own CRUD operations for each busi-
ness object in the WCF services. If you wanted to support some additional common line of business
features such as data paging, it would require additional custom logic. The ADO.NET Data Services
add support for this functionality with minimal coding effort.

To get started with the ADO.NET Data Services in a new project, you will first need to add a web ser-
vice to your ASP.NET project using the new ADO.NET Data Service template, as shown in Figure 2-18.

534045c02.indd 60 3/13/10 4:53:09 PM

Design ❘ 61

In this example, you call the new service FitnessTrackerPlusService. You will now be left with a
FitnessTrackerPlus.svc file in the project and if you right-click on the file and select the View Code
option, you will be presented with the code in Listing 2-18.

Figure 2-18

listing 2-18: FitnessTrackerPlus.svc.cs (located in the ADODataServicesSample project)

using System;
using System.Collections.Generic;
using System.Data.Services;
using System.Data.Services.Common;
using System.Linq;
using System.ServiceModel.Web;
using System.Web;

namespace ADODataServicesSample.Web
{
 public class FitnessTrackerPlus : DataService< /* TODO: put your data
source class name here */ >
 {
 // This method is called only once to initialize service-wide
 // policies.
 public static void InitializeService(DataServiceConfiguration config)
 {

continues

534045c02.indd 61 3/13/10 4:53:10 PM

62 ❘ ChaPter 2 PrePare to Be PoPular

 // TODO: set rules to indicate which entity sets and service
 // operations are visible, updatable, etc.
 // Examples:
 // config.SetEntitySetAccessRule(“MyEntityset”,
 // EntitySetRights.AllRead);
 // config.SetServiceOperationAccessRule(“MyServiceOperation”,
 // ServiceOperationRights.All);
 config.DataServiceBehavior.MaxProtocolVersion =
DataServiceProtocolVersion.V2;
 }
 }
}

As you can see in Listing 2-18, the first thing you need to do is create a data source class that will
be used as the DataService type. This class is responsible for actually retrieving and manipulating
the data being exposed by the DataService. Most of the time, you would be using a LINQ to SQL
DataContext or perhaps an ObjectContext created using the Entity Framework. For this example,
let’s just use a custom object context called FitnessTrackerPlusContext. At a minimum, you must
add a couple of public properties to the class that are of the type IQueryable in order for ADO.
NET Data Services to expose them. Listing 2-19 shows the basic FitnessTrackerPlusContext
class with Exercises, and Foods properties that return IQueryable types.

listing 2-19: FitnessTrackerPlusContext.cs (located in the ADODataServicesSample project)

using System.Collections.Generic;
using System.Linq;

namespace ADODataServicesSample.Web
{
 public class FitnessTrackerPlusContext
 {
 private List<Exercise> exercises = new List<Exercise>();
 private List<Food> foods = new List<Food>();

 public FitnessTrackerPlusContext()
 {
 // Create an in-memory database for the Context object

 exercises = new List<Exercise>
 {
 new Exercise(1,1,”Barbell Bench Press”),
 new Exercise(2,1,”Treadmill”),
 new Exercise(3,2,”Jogging 5 Miles”),
 new Exercise(4,2,”Baseball Practice - 2 Hrs”)
 };

 foods = new List<Food>
 {

listing 2-18 (continued)

534045c02.indd 62 3/13/10 4:53:10 PM

Design ❘ 63

 new Food(1, 1,”Banana”),
 new Food(2, 2,”Chocolate Ice Cream”),
 new Food(3, 3,”Glazed Donut”),
 new Food(4, 4,”Coffee w/Cream & Sugar”)
 };
 }

 public IQueryable<Exercise> Exercises
 {
 get { return exercises.AsQueryable<Exercise>(); }
 }

 public IQueryable<Food> Foods
 {
 get { return foods.AsQueryable<Food>(); }
 }
 }
}

After creating a DataContext class for the service, you then need to take a look at the InitializeService
method; there you will see some rules that need to be defined. The ADO.NET Data Services require that
access rules be defined for each entity being exposed by the context object. Several different options are
available for this setting. All settings are applied by using the supplied IDataServiceConfiguration
object’s SetEntitySetAccessRule method. This method takes two parameters, the first being the
name of the entity set, and the second the permissions or access rules that should be applied to the
entity set. The permissions are available using the EntitySetRights enumeration. Table 2-3 covers
the possible combinations of access rules that can be used.

table 2-3: Entity Access Rights

aCCess right DesCriPtion

None No rights to access any data

All Permission for full CRUD based access

AllRead Permission for full read access

AllWrite Permission for full write access

ReadSingle Permission to read single data entry

ReadMultiple Permission to read multiple data entries

WriteAppend Permission to create entries

WriteReplace Permission to update entries

WriteMerge Permission to merge entries

WriteDelete Permission to delete existing entries

534045c02.indd 63 3/13/10 4:53:10 PM

64 ❘ ChaPter 2 PrePare to Be PoPular

You can also apply a set of rights to all available entities instead of doing so on a per entity basis.
For example, if you want to give read access to both the Exercises and Foods entities instead of
setting the AllRead right on each individual entity you could do so with the following line:

config.SetEntitySetAccessRule(“*”,EntitySetRights.AllRead);

If you want to give all entity sets read and delete permissions you could opt to even combine permis-
sions in one line using the or operator.

config.SetEntitySetAccessRule(“*”,EntitySetRights.AllRead |
EntitySetRights.WriteDelete);

Getting back to the example, you want to give full read access to both the Foods and Exercises
properties so the easiest way to go about this is to use the AllRead rights setting, which covers read-
ing single and multiple rows. Listing 2-20 shows the updated DataService class with the entity
rights set and the custom FitnessTrackerPlusContext being used.

listing 2-20: FitnessTrackerPlus.svc.cs (located in the ADODataServicesSample project)

using System.Data.Services;

namespace ADODataServicesSample.Web
{
 public class FitnessTrackerPlus: DataService<FitnessTrackerPlusContext>
 {
 public static void InitializeService(IDataServiceConfiguration
config)
 {
 config.SetEntitySetAccessRule(“*”, EntitySetRights.All);
 }
 }
}

At this point, you can access the service right through the browser and even query the data. The
ADO.NET Data Services framework maps specific CRUD style requests to the available HTTP
verbs. Table 2-4 shows how each HTTP verb maps to a data service operation.

table 2-4: ADO.NET Data Services HTTP Verbs

oPeration verb

Read GET

Create POST

Update PUT

Delete DELETE

534045c02.indd 64 3/13/10 4:53:10 PM

Design ❘ 65

In the case of the read operation, an HTTP GET is used to retrieve the data. By default the data is
sent back in ATOM feed form. For example, if you want to access the Exercises collection, you can
navigate from the browser to http://localhost:1044/FitnessTrackerService.svc/Exercises,
substituting your own port number after localhost, of course. This results in all of the created
exercises being sent back in an ATOM feed-based form. The data services can also send back the
data in JSON form.

You must disable RSS feed functionality if you are attempting to view the output
in Internet Explorer 8; otherwise, you will see a standard feed form with entries
for each of the exercise objects created.

If you turn off the RSS support, you will see the following XML returned by the data service:

<?xml version=”1.0” encoding=”utf-8” standalone=”yes” ?>
<feed xml:base=”http://localhost:1044/FitnessTrackerService.svc/”
 xmlns:d=”http://schemas.microsoft.com/ado/2007/08/dataservices”
 xmlns:m=”http://schemas.microsoft.com/ado/2007/08/dataservices/metadata”
 xmlns=”http://www.w3.org/2005/Atom”>
 <title type=”text”>Exercises</title>
 <id>http://localhost:1044/FitnessTrackerService.svc/Exercises</id>
 <updated>2009–05–29T03:59:17Z</updated>
 <link rel=”self” title=”Exercises” href=”Exercises” />
 <entry>
 <id>http://localhost:1044/FitnessTrackerService.svc/Exercises(1)</id>
 <title type=”text” />
 <updated>2009–05–29T03:59:17Z</updated>
 <author>
 <name />
 </author>
 <link rel=”edit” title=”Exercise” href=”Exercises(1)” />
 <category term=”DataServicesSample.Web.Exercise”
scheme=”http://schemas.microsoft.com/ado/2007/08/dataservices/scheme” />
 <content type=”application/xml”>
 <m:properties>
 <d:ExerciseID m:type=”Edm.Int32”>1</d:ExerciseID>
 <d:UserID m:type=”Edm.Int32”>1</d:UserID>
 <d:ExerciseName>Barbell Bench Press</d:ExerciseName>
 </m:properties>
 </content>
 </entry>
 <entry>
 <id>http://localhost:1044/FitnessTrackerService.svc/Exercises(2)</id>
 <title type=”text” />
 <updated>2009–05–29T03:59:17Z</updated>
 <author>
 <name />
 </author>
 <link rel=”edit” title=”Exercise” href=”Exercises(2)” />
 <category term=”DataServicesSample.Web.Exercise”
scheme=”http://schemas.microsoft.com/ado/2007/08/dataservices/scheme” />

534045c02.indd 65 3/13/10 4:53:10 PM

66 ❘ ChaPter 2 PrePare to Be PoPular

 <content type=”application/xml”>
 <m:properties>
 <d:ExerciseID m:type=”Edm.Int32”>2</d:ExerciseID>
 <d:UserID m:type=”Edm.Int32”>1</d:UserID>
 <d:ExerciseName>Treadmill</d:ExerciseName>
 </m:properties>
 </content>
 </entry>
 <entry>
 <id>http://localhost:1044/FitnessTrackerService.svc/Exercises(3)</id>
 <title type=”text” />
 <updated>2009–05–29T03:59:17Z</updated>
 <author>
 <name />
 </author>
 <link rel=”edit” title=”Exercise” href=”Exercises(3)” />
 <category term=”DataServicesSample.Web.Exercise”
scheme=”http://schemas.microsoft.com/ado/2007/08/dataservices/scheme” />
 <content type=”application/xml”>
 <m:properties>
 <d:ExerciseID m:type=”Edm.Int32”>3</d:ExerciseID>
 <d:UserID m:type=”Edm.Int32”>2</d:UserID>
 <d:ExerciseName>Jogging 5 Miles</d:ExerciseName>
 </m:properties>
 </content>
 </entry>
 <entry>
 <id>http://localhost:1044/FitnessTrackerService.svc/Exercises(4)</id>
 <title type=”text” />
 <updated>2009–05–29T03:59:17Z</updated>
 <author>
 <name />
 </author>
 <link rel=”edit” title=”Exercise” href=”Exercises(4)” />
 <category term=”DataServicesSample.Web.Exercise”
scheme=”http://schemas.microsoft.com/ado/2007/08/dataservices/scheme” />
 <content type=”application/xml”>
 <m:properties>
 <d:ExerciseID m:type=”Edm.Int32”>4</d:ExerciseID>
 <d:UserID m:type=”Edm.Int32”>2</d:UserID>
 <d:ExerciseName>Baseball Practice</d:ExerciseName>
 </m:properties>
 </content>
 </entry>
</feed>

Earlier, it was stated that for read operations to be supported by the ADO.NET Data Services, the
context object properties that are being exposed must implement the IQueryable interface. If you
wanted to expand the permission set to include full CRUD capabilities on the Foods and Exercises
objects, the context object would also need to implement the IUpdateable interface. Unfortunately,
no built-in implementation of this interface is available for custom business objects. In fact, currently
only the Entity Framework has a full implementation of this interface that supports update, delete,
and create methods from the data services.

534045c02.indd 66 3/13/10 4:53:10 PM

Design ❘ 67

Creating an implementation of this interface is beyond the scope of this book but
there have been some attempts made on sites such as http://www.codeplex.com
that provide full implementations for LINQ to SQL DataContext classes as well
as for potential custom business objects.

Rather than fight with a ton of custom code to implement IUpdateable on the custom context
object, let’s take a look at what it takes to make use of the ADO.NET Data Services with the
Entity Framework, which has full support for all CRUD operations already built into the frame-
work. In this next example, you must first add a new ADO.NET Entity Data Model file to the
ASP.NET project called FitnessTrackerPlus. You should include both the foods and exercises
tables that are located in the FitnessTrackerPlus.mdf file. Next, you need to add a new ADO.NET
Data Service called FitnessTrackerPlus.svc. As in the previous example, you need to specify the
DataContext class type in the DataService template definition. In this case, you simply add the
FitnessTrackerPlusEntities type that was created with the Entity Framework. As before, you
must set the access rights. This time, let’s enable the full CRUD operations on the exercises entity
but only enable read operations on the foods. Listing 2-21 shows the updated FitnessTrackerPlus
service implementation.

listing 2-21: FitnessTrackerPlus.svc.cs (located in the ADODataServicesEntitiesSample project)

using System.Data.Services;
using DataServicesEntitiesSample.Web.Data;

namespace DataServicesEntitiesSample.Web.Services
{
 public class FitnessTrackerPlus: DataService<FitnessTrackerPlusEntities>
 {
 // This method is called only once to initialize service-wide policies.
 // In this case you are giving read-ony access to the foods table,
 // and full access to the exercises table

 public static void InitializeService(IDataServiceConfiguration config)
 {
 config.SetEntitySetAccessRule(“foods”,
EntitySetRights.AllRead);
 config.SetEntitySetAccessRule(“exercises”,
EntitySetRights.All);
 config.DataServiceBehavior.MaxProtocolVersion =
DataServiceProtocolVersion.V2;

 }
 }
}

Now that you have the service implementation created and the FitnessTrackerPlus.edmx file config-
ured with the foods and exercises tables, it’s time to access the service from a Silverlight client. To

534045c02.indd 67 3/13/10 4:53:11 PM

68 ❘ ChaPter 2 PrePare to Be PoPular

start, add a new service reference to the Silverlight project. If you click the Discover button, the
wizard should locate the FitnessTrackerPlusService, as shown in Figure 2-19.

Figure 2-19

Once the wizard is complete, you have the necessary proxy class that contains all of the
entity definitions as well as the data access methods that were enabled by the calls to the
SetEntitySetAccessRule method made in the FitnessTrackerPlusService earlier. You must
also add a reference to the System.Data.Services.Client assembly, which provides Silverlight
clients with the ability to call the service. As with WCF, all calls to the service from Silverlight must
be asynchronous in nature. To retrieve data, you need to create a valid LINQ expression and cast
it as a DataServiceQuery. The client library takes care of formatting the LINQ query into a valid
URI in a format that the service understands. Finally, you need to have a callback method ready
to handle parsing the results of the query. Because you need to do this asynchronously, you use the
BeginExecute and EndExecute methods of the DataServiceQuery object. This example adds
two DataGrids to the XAML page and loads them with the first ten available foods and exercises
in the database using the DataServiceQuery object. Listing 2-22 shows the DataServiceQuery
operations being performed asynchronously and when completed the results are added to an
ObservableCollection object that is bound to the appropriate DataGrid control.

listing 2-22: MainPage.xaml.cs (located in the ADODataServicesEntitiesSample project)

using System;
using System.Collections.ObjectModel;
using System.Collections.Generic;
using System.Linq;
using System.Windows;

534045c02.indd 68 3/13/10 4:53:11 PM

Design ❘ 69

using System.Windows.Controls;
using System.Data.Services.Client;
using DataServicesEntitiesSample.Services;

namespace ADODataServicesEntitiesSample
{
 public partial class MainPage: UserControl
 {
 public MainPage()
 {
 InitializeComponent();

 FitnessTrackerPlusEntities entities = new
FitnessTrackerPlusEntities(new
Uri(“Services/FitnessTrackerPlus.svc”,UriKind.Relative));

 // Create LINQ to Entities queries that will
 // retrieve the first 10 exercises and foods

DataServiceQuery<exercise> exercises = (DataServiceQuery<exercise>)(from e
in entities.exercises select e).Take(10);
 DataServiceQuery<food> foods = (DataServiceQuery<food>)(from
e in entities.foods select e).Take(10);

 // Set up all event handlers

 exercises.BeginExecute(new AsyncCallback(OnExercisesLoaded),
exercises);
 foods.BeginExecute(new AsyncCallback(OnFoodsLoaded), foods);

 }

 private void OnExercisesLoaded(IAsyncResult result)
 {
 DataServiceQuery<exercise> exercisesQuery =
(DataServiceQuery<exercise>)result.AsyncState;
 ObservableCollection<exercise> exerciseList = new
ObservableCollection<exercise>();

 // Complete the query operation and add all exercises returned
 // to the ObservableCollection
 // The result variable being passed into EndExecute will
 // contain all exercises retrieved from the FitnessTrackerPlus
 // service

 var exercises = exercisesQuery.EndExecute(result);

 foreach (exercise exercise in exercises)
 exerciseList.Add(exercise);

 Exercises.ItemsSource = exerciseList;
 }

 private void OnFoodsLoaded(IAsyncResult result)
 {

continues

534045c02.indd 69 3/13/10 4:53:11 PM

70 ❘ ChaPter 2 PrePare to Be PoPular

 DataServiceQuery<food> foodsQuery =
(DataServiceQuery<food>)result.AsyncState;
 List<food> foodList = new List<food>();

 // Complete the query operation and add all foods
 // returned to the ObservableCollection
 // The result variable being passed into EndExecute
 // will contain all foods retrieved
 // from the FitnessTrackerPlus service

 var foods = foodsQuery.EndExecute(result);

 foreach (food food in foods)
 foodList.Add(food);

 Foods.ItemsSource = foodList;
 }
 }
}

WCF RIA Services

Of all the new business logic layer technologies, none of them were designed from the ground up
to address some of the unique problems that exist when developing multi-tier Silverlight client appli-
cations. Only the new WCF RIA Services framework was designed from the start to address these
unique situations. The WCF RIA Services framework is newly available to Silverlight 4 applications
and provides a complete business logic layer technology that works with your existing data access
layer regardless of whether or not you choose to use LINQ to SQL, Entity Framework, or any other
custom data access layer. The WCF RIA Services framework provides built-in functionality for
CRUD-based operations on business objects as well as validation support. The extensive validation
support is perhaps one of the greatest strengths of the framework in that properties can be easily
decorated with validation attributes and those attributes will apply not only on the server side but
also on the client side.

Let’s take a look at a simple example using an in-memory database of exercise objects that shows how
easy it is to expose them to a Silverlight client with validation. You’ll use an in-memory database as
opposed to a LINQ to SQL or Entity Framework implementation in order to give an overview of the
features that are specific to the WCF RIA Services. Unlike the ADO.NET Data Services covered pre-
viously, these new services really offer full functionality with all data access layer frameworks and
you don’t have to worry about losing any features depending on which data access choice you make.
I will be covering in much greater detail how to use the WCF RIA Services with the other data
access layer technologies as you move through the implementation of FitnessTrackerPlus.

listing 2-22 (continued)

534045c02.indd 70 3/13/10 4:53:11 PM

Design ❘ 71

Adding WCF RIA Services Support

When creating a new Silverlight application, you can add support for WCF RIA Services by simply
selecting the Enable WCF RIA Services option in the project creation wizard, as shown in Figure 2-20.

Figure 2-20

If you already have a Silverlight project created, you can still easily add support for WCF RIA
Services by opening up the Silverlight project options window and selecting the ASP.NET project
under the WCF RIA Services link, as shown in Figure 2-21.

Figure 2-21

534045c02.indd 71 3/13/10 4:53:11 PM

72 ❘ ChaPter 2 PrePare to Be PoPular

To better understand how WCF RIA Services work, let’s create a simple example.

 1. Add a new LINQ to SQL classes file to the project under a folder named Data. You can call
this FitnessTrackerPlus.dbml.

 2. Drag the exercises table onto the designer from the FitnessTrackerPlus.mdf file. At this point,
you have a data access class that the WCF RIA Services can make use of.

 3. To create a new service, you should create a new folder called Services and add a new
DomainService called ExerciseService to the project using the Domain Service Class item
template, as shown in Figure 2-22.

Figure 2-22

This new template is available after installing the WCF RIA Services framework. After
naming the service, you are then presented with a screen allowing you to choose a data
source for your service, as shown in Figure 2-23.

 4. Select the FitnessTrackerPlusDataContext from the list. Once you select the DataContext,
you are presented with a list of available entities along with options for enabling editing and
generated metadata. For this example, you only give the client the ability to query for data.
If you want to provide full CRUD support, select the Enable editing option and methods are
automatically generated for you to support these additional operations.

534045c02.indd 72 3/13/10 4:53:11 PM

Design ❘ 73

 5. When you check the “Generate associated classes for metadata” option, you create addi-
tional metadata classes for each entity that the WCF RIA Services framework uses to provide
its entity validation feature. You will see extensive coverage of the entity validation feature
later on in the book so for this example you can leave the option unselected.

Figure 2-23

After making your entity selections, the WCF RIA Service is created and, in this case, will auto-
matically include a data querying method that the client can use to retrieve exercise objects from
the database. Listing 2-23 shows the ExerciseService code generated by the WCF RIA Services
Domain Service Wizard. As you can see, by default, you simply have a GetExercises method that
returns all the exercises from the database.

listing 2-23: ExerciseService.cs (located in the WCFRIAServicesSample project)

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.ComponentModel.DataAnnotations;
using System.Data.Linq;
using System.Linq;
using System.Web.DomainServices;
using System.Web.DomainServices.Providers;
using System.Web.Ria;
using System.Web.Ria.Services;

continues

534045c02.indd 73 3/13/10 4:53:12 PM

74 ❘ ChaPter 2 PrePare to Be PoPular

using RIAServicesSample.Web.Data;

namespace RIAServicesSample.Web.Services
{
 [EnableClientAccess()]
 public class ExerciseService:
LinqToSqlDomainService<FitnessTrackerPlusDataContext>
 {
 // TODO: Consider
 // 1. Adding parameters to this method and constraining returned
 // results, and/or
 // 2. Adding query methods taking different parameters.

 public IQueryable<exercise> GetExercises()
 {
 return this.DataContext.exercises;
 }
 }
}

Limiting the Number of Returned Records

As you can see the default implementation of GetExercises returns all the exercises in the data-
base. This isn’t very efficient so let’s limit the number of records being returned. In the following
code, the GetExercises method is modified to make use of the Take method available in LINQ to
SQL to limit the number of records returned to 25.

public IEnumerable<exercise> GetExercises()
{
 List<exercise> exercises = (from e in this.DataContext.exercises
 select e).Take(25).ToList<exercise>();

 return exercises;
}

Code snippet ExerciseService.cs located in the RIAServicesSample project

It is important to note that the generated method GetExercises was not named that way by acci-
dent. The WCF RIA Services framework follows a very specific naming convention when determin-
ing which methods to make available to the client. In WCF and ADO.NET Data Services, any public
method would have a corresponding asynchronous client-side method generated by the proxy class.

In WCF RIA Services solutions, that is not the case. Simply designating a method as public will not
be sufficient. Instead, WCF RIA Services look for methods that follow a specific naming convention
and signature. For example, methods that are meant to query and return data to the client should
begin with one of the following prefixes: Get, Fetch, Query, Retrieve, and Select. Query type
methods must also return an IEnumerable, IQueryable, or a single instance of the entity type.
However, you can have any number of parameters in a query method, which can help you to filter

listing 2-23 (continued)

534045c02.indd 74 3/13/10 4:53:12 PM

Design ❘ 75

the results. Table 2-5 lists the various combinations of naming conventions that you can follow
when you add your own CRUD operations, if you wish for them to be exposed by the WCF RIA
Services framework.

table 2-5: Naming Conventions for WCF RIA Services Method

Data methoD reQuireD methoD PreFix reQuireD methoD signature

Query Data Get, Fetch, Query, Retrieve,

or Select

IEnumerable<T> GetData()

IQueryable<T> GetData()

Create Data Insert, Add, Create void InsertData(T entity)

Update Data Update, Change, Modify void UpdateData(T entity)

Delete Data Delete, Remove void DeleteData(T entity)

If, for some reason, you are unable to follow the WCF RIA Services naming conventions in your
own custom methods, you also have the option of adding specific attributes above the method decla-
rations. The WCF RIA Services framework also looks for these attributes when determining which
methods to make available to clients. You can use any of the following attributes above your custom
methods: [Query], [Insert], [Update], and [Delete]. For example, if you have a method that
searches for specific foods called FindExercises, by default, this method is not exposed to the client.
If you were to add the [Query] attribute directly above the method declaration then the framework
would, in fact, expose it to clients.

Unlike the previous examples for WCF and ADO.NET Data Services, the WCF RIA Services are
tightly coupled with the accompanying Silverlight project. This tight integration enables the Silverlight
client to access the ExerciseService without the additional step of adding a “Service Reference” to
the project. Instead of the typical proxy class being generated on the client side, the WCF RIA Services
framework provides a DomainContext object that corresponds to the DomainService created earlier.
This client-side class is created in a folder called Generated_Code, which is hidden by default. If you
select the Show All Files option on the Silverlight project, you’ll see this folder along with a file ending
in .g.cs. In this example, the file is called RIAServicesSample.Web.g.cs.

An examination of this file shows that it is very similar to the proxy class files generated when you
add WCF or ADO.NET service references to a project. In this file, you will find the various entity
classes that are being exposed as well as an ExerciseContext class that provides the functionality
required to call the GetExercises method from the service.

Although accessing the service from the Silverlight client must still be done asynchronously, WCF
RIA Services doesn’t provide you with an asynchronous version of the GetExercises method.
Instead, the DomainContext object provides EntityList objects that represent the entities being
exposed, and rely on a Load method, which, behind the scenes, asynchronously populates the
EntityList objects. Listing 2-24 shows how the ItemsSource property of a DataGrid can be set
to the exercises EntityList of the DomainContext object. Once the Load method is completed,
the DataGrid automatically populates with the results because the EntityList implements the
INotifyPropertyChanged just like an ObservableCollection.

534045c02.indd 75 3/13/10 4:53:12 PM

76 ❘ ChaPter 2 PrePare to Be PoPular

listing 2-24: MainPage.xaml.cs (located in the RIAServicesSample project)

using System.Windows.Controls;
using RIAServicesSample.Web.Data;
using RIAServicesSample.Web.Services;

namespace RIAServicesSample
{
 public partial class MainPage: UserControl
 {
 private ExerciseContext context = new ExerciseContext();

 public MainPage()
 {
 InitializeComponent();

 // Once Load<exercise> completes the exercises entity
 // list will be populated
 // By setting the ItemsSource before the LoadExercises
 // call you can be sure that
 // the DataGrid will populate after the exercises
 // have been loaded

 ExercisesGrid.ItemsSource = context.exercises;
 context.Load<exercise>(context.GetExercisesQuery());
 }
 }
}

This is a pretty simple example of how to make use of the WCF RIA Services in a Silverlight client
and it barely scratches the surface of what the framework has to offer. There will be much more
extensive coverage of the WCF RIA Services features — such as code sharing and validation — in
upcoming chapters of the book.

Now there is only one more important area to be concerned with when looking at the logical tier
design process. In some ways, it is the most important because it can really alter the decisions you
make in every other design tier. That area is the data storage layer, and it does not matter if you are
a programmer or database guru; the decision is an important one and most likely will stay with you
throughout the life of the project and for years to come.

Data Storage Layer

The final logical tier design decision is the choice of database platform. For most sites, the database
will reside on a separate physical machine than the rest of the application logic. The choice of which
database to use depends on many factors such as cost, performance, and scalability. For this applica-
tion, I will focus primarily on the factor that is most important to me, which is cost.

It is extremely difficult to get involved in the age old debate about which database platform is better:
Oracle versus SQL Server versus MySQL. At times, it seems like you would have a better chance of

534045c02.indd 76 3/13/10 4:53:12 PM

Design ❘ 77

seeing Yankee fans happily interacting with Red Sox fans before you would see those in the vari-
ous Oracle and SQL Server camps agree on anything. The fact is that in the latest releases of both
platforms, you will find very powerful database capabilities that will suit your needs quite well. In
fact, even the freely available MySQL database engine is starting to gain more traction in enter-
prise database circles. Now at this point in the book I don’t want to start any flame wars between
the groups. I’ll save that for the solution area of this chapter when I choose the database platform
that will be used in this book. Hint: It’s not Oracle or MySQL. Anyway, all three have something
to offer and although when using LINQ to SQL as your data access layer, you can use only SQL
Server, the other data access technologies such as ADO.NET and the Entity Framework interact
quite nicely with Oracle, SQL Server, MySQL, and other databases. Let’s look at what each of the
major platforms has to offer before making a final decision on the data storage layer that you will
use for FitnessTrackerPlus.

SQL Server

Microsoft’s SQL Server version 2008 is available in several different versions. The least expensive
version is SQL Server Express Edition. In fact, it’s completely free. This edition comes in three flavors.
You can download the Express edition with or without the Advanced Services option. The basic
version includes the database engine along with SQL Server Management Studio, which allows you
to administer databases from a graphical user interface. The Advanced Services version includes
everything from the Basic edition as well as providing full-text indexing and reporting services. In
addition to these versions, you can also download the Compact edition of the database, which pro-
vides 2MB of storage and full support for T-SQL syntax. This edition is great for embedding with
desktop applications that need a standalone database.

Other editions available for SQL Server include the Developer, Web, Workgroup, Standard, and
Enterprise versions. Each of these versions has various limitations and size constraints. For example,
the free editions are limited to a database size of 4GB and can only make use of 1 CPU. On the other
side of the spectrum, the Enterprise edition can make use of the maximum number of CPUs avail-
able to the operating system. It also has no restrictions on the overall database size. As you move
through the various editions available for SQL Server, the prices range from free to thousands of
dollars. Nonetheless as your site grows in size and you find the need to scale the database layer, you
will most likely find an edition of SQL Server that fits your needs.

SQL Server is the only database engine that is supported by all available data access technologies in
.NET. Support for SQL Server is included in ADO.NET, LINQ to SQL, and the Entity Framework.

There is one caveat, however, and that is SQL Server can be run only on a
Microsoft Windows-based platform. If you need to run the database on
a non-Microsoft operating system such as Linux, SQL Server is not a viable
option.

534045c02.indd 77 3/13/10 4:53:12 PM

78 ❘ ChaPter 2 PrePare to Be PoPular

Oracle

Oracle also provides various editions of its own suite of database technology. Recently Oracle has
introduced its own free version of the database engine called Oracle XE edition. Like SQL Server,
Oracle has several different editions available based on the needs of your site. Oracle is really the
powerhouse of all the database options that you could choose from. It is also, however, the most
complex of the bunch. One benefit to Oracle is that it supports multiple platforms so it can be run
in a Linux environment as well as Windows. Through the years, Oracle has always been considered
the top performer when compared to SQL Server, but SQL Server has undergone so many drastic
improvements that the gap has been significantly lowered.

MySQL

MySQL is another database option that is getting more powerful with every release. One of the old-
est limitations of MySQL was the lack of stored procedure support. With the latest release, however,
stored procedures are fully supported. MySQL is free under the GNU license, as long as the applica-
tion you are creating that utilizes MySQL also falls under the GNU license. You will not have to pay
a licensing fee. If, however, you are developing a closed source product that uses MySQL, you will
most likely need to look into purchasing one of the available commercial licenses. As far as speed
and reliability go, MySQL has made drastic improvements over the years and can be considered a
viable alternative to Oracle and SQL Server. Like Oracle, the MySQL database engine is platform-
independent and versions of MySQL can be found for Windows, Linux, and a host of other operating
systems.

Access

Everyone at one time or another has had the pleasure of interacting with Access as a database plat-
form. This little database-engine-that-could has been around for many years and has handled the
problem of small application-based databases throughout its lifetime. With the introduction of SQL
Express, however, the decision to utilize Access as a primary database engine for an application is
questionable at best. There is no T-SQL query language available, no stored procedures, and no real
support from any of the data access technologies discussed previously other than ADO.NET. Only
one major edition of Access is available and it is included in various versions of Microsoft Office.
While it can still be a viable candidate as a database for desktop applications, it is a pretty safe bet
that you will not be using Access for the FitnessTrackerPlus application or any scalable website that
you are implementing in the future.

FitnesstrackerPlus application Design
Now that you have been introduced to several possible technology choices for the FitnessTrackerPlus
application, it’s time to take a quick first pass at the overall design of the application itself. Once you
have a good feel for what FitnessTrackerPlus will need to accomplish, you can review the available
technology and make informed decisions about which frameworks to use in each development tier.
In the following sections, you will take a crack at creating an initial design for each of the pages that
are required in the FitnessTrackerPlus application. To start things off, let’s take a look at what needs
to go into the initial landing page.

534045c02.indd 78 3/13/10 4:53:12 PM

Design ❘ 79

Landing Page

The first page that users will see when typing FitnessTrackerPlus.com is the landing page. In any
major website there is perhaps no page more important than this one because it provides, in some
cases, your one and only chance to hook potential customers into your application. First impressions
are extremely important on the Web, especially if you are creating a site that has many other com-
petitors. If users cannot find the information they are looking for right away or if the landing page
just does not seem professionally done, they will leave and no doubt find one of your competitors.
Once this happens, it is extremely difficult to get that customer back, which is why you must get this
right the first time.

There are several items that you should include on this landing page that most visitors will look for.
If they have come here, it is safe to assume that they are looking for an easy-to-use Web-based fitness
tracking system, and this page needs to assure visitors that they have come to the right place for this.
The following is a list of some basic requirements for the landing page that will ensure you have a
professional-looking page for FitnessTrackerPlus:

A screenshot of the application showing foods, exercises, or measurements being added to a ➤➤

user’s fitness journal

A bulleted list of features and benefits that stand out against the competition and are compelling ➤➤

enough that visitors will want to see more of the site

Login capabilities for existing users➤➤

A signup link so new users can join➤➤

A footer area with copyright, privacy policy, site information, contact, and terms of service ➤➤

page links

Site logo across top of screen➤➤

Although you want visitors to know precisely what is available here on FitnessTrackerPlus, you don’t
want the landing page to be too cluttered. Most popular sites now are keeping landing pages simple
and highlighting only the most important aspects of the site while providing obvious things such as
signup and login capabilities. To get an even better idea of what the landing page should look like, it
can sometimes help to sketch out possible ideas. Figure 2-24 shows one possible solution that includes
areas for each of the landing page requirements listed.

Earlier in the chapter, while describing the various problems that need to be solved in planning
your Silverlight application architecture, I warned about the possibility that users who have never
heard of Silverlight will eventually access your site. Despite millions of successful installations and
implementations by the 2008 Olympics and even Major League Baseball, for example, you will no
doubt see visitors who don’t have the plug-in installed on their machines. Not only do you have
to prepare some kind of alternate landing page for those users, but you’ll also need to convince
them that Silverlight is a safe plug-in to install. Most users will already have the Flash plug-in from
Adobe installed and will be familiar with why it is required. It is a safe bet that just YouTube alone
probably helped facilitate several million installations of the Flash plug-in. In a way, that helps you
because users feel pretty safe with Flash, and Silverlight is very similar in concept.

534045c02.indd 79 3/13/10 4:53:13 PM

80 ❘ ChaPter 2 PrePare to Be PoPular

Figure 2-24

I can’t stress enough how important this initial landing page is for this applica-
tion and any site for that matter. Within seconds, the user should know that
FitnessTrackerPlus is a feature-rich, easy-to-use fitness tracking application that,
combined with Silverlight technology, provides an experience that can’t be found
elsewhere.

Besides making your users feel safe about the plug-in, your landing page needs some text
describing what the Silverlight plug-in is as well as easy-to-follow installation instructions.
Lucky for us, the developers at Microsoft thought about this in advance and have provided the
PluginNotInstalledTemplate for the Silverlight control. That seems like a good place to start
when designing a solution for this problem.

You want the non-Silverlight version of the page to look as similar as possible to the Silverlight ver-
sion. As with the Silverlight version of the landing page, you still must display the site’s basic fea-
tures so users know the site’s purpose before they go through the process of installing the plug-in.
Because all other areas of the site utilize Silverlight functionality, the only other requirements for
this template are providing detailed instructions on plug-in installation and descriptive information
of the plug-in’s purpose, and, again, ensuring that it’s safe to install.

Although Silverlight supports most major web browsers, it’s beneficial to provide a list of brows-
ers that are currently supported to avoid any user frustration due to an unsupported browser. Since
the initial release of Silverlight, developers all too often have ignored the installation experience
and relied on the default page that loads when users don’t have the browser installed. The default
experience is simply a blank page with a button that tells the user to click here to install Silverlight.

534045c02.indd 80 3/13/10 4:53:13 PM

Design ❘ 81

Regardless of the application you are building, it is a pretty safe bet that anyone who visits your site
expecting a traditional website design and is greeted with this will ignore your site and move on to
the competition.

Fitness Dashboard

With the landing page designed, you now need to think about what users will see after they log in to
the site. The fitness dashboard page will be the first page seen by users and will give them access to
all other areas of the site. From the dashboard the user will need the ability to perform the following
functions:

View current measurements➤➤

View nutrition summary for current day➤➤

View exercise summary for current day➤➤

View any site announcements➤➤

Select a theme to be applied to entire site➤➤

View and update account information such as password and e-mail address➤➤

One of the original requirements for the fitness dashboard was the ability to provide announce-
ment information to all of the users of the site without having to resort to bulk e-mail notifications.
It would be best if you could do this without forcing the user to leave the dashboard page. What
you are looking for here is some type of popup window that contains an announcement for the
user. Don’t worry about resorting to standard browser popup windows that may be blocked by
browser popup blockers. Silverlight 4 now includes an incredibly useful ChildWindow control that
you can use to display a modal dialog to the user. This would be the preferred way to display the
announcements.

Food Log

One of the most important features of the site is providing the ability for users to enter the foods
they eat on a daily basis. During the design phase you want to make sure that you come up with the
best way to provide this functionality. To ensure that you satisfy this requirement, you can create a
couple of user stories that simulate what the user is trying to do while on this page. The following
are a couple of potential user stories that reflect what real users may try to do on this page:

John logs in to FitnessTrackerPlus to enter the foods that he has eaten today. He clicks the ➤➤

Food Log menu link and immediately looks for a search box because he would rather not have
to enter all of the nutritional information for the foods. John knows that the site includes an
extensive database of foods and he should be able to find a food that matches what he has
eaten. He enters the food name into the search box and pages through an extensive list of foods
until he finds one that is the best match. After selecting the checkbox presented in the list and
then clicking the Add Food button, he sees his food added to a table along with the calories,
protein, carbohydrate, and fat values for the given food. It is also nice to see that after all of his
foods have been entered a daily total appears that calculates the values of all the basic nutrients
that he has consumed.

534045c02.indd 81 3/13/10 4:53:13 PM

82 ❘ ChaPter 2 PrePare to Be PoPular

Mary has been a user of FitnessTrackerPlus for a few months now and has also been on a diet ➤➤

that commonly requires her to eat the same foods during the course of the week. She notices
that instead of searching for matching foods every time she uses her journal she can simply
click a list of recently consumed foods and quickly add those to her journal. Now instead of
spending minutes searching for the foods she eats, which for the most part are the same every
day, she spends only seconds pulling items from the recent foods list into her journal.

Tom isn’t very interested in paging through thousands of search results in order to enter the ➤➤

foods he eats. He notices that the search box offers matching food suggestions as he types
and can quickly just click one of the suggestions to add an item to his food log. If he doesn’t
find a match, he just finishes typing the food and creates a new custom food that lets him
enter the nutritional information for the food he is trying to enter. The best part is he has to
do this only once and then his custom foods start appearing in the suggestions, which makes
it even faster for him to enter foods the next day.

These are pretty basic user stories but they give you an excellent idea of what might be needed on
this page.

Exercise Log

The exercise log page will satisfy the requirement of providing the users with the ability to enter the
exercises performed on a daily basis. This page will most likely require many of the items that were
designed on the food log page. For example, from this page it is reasonable to expect that users will
need to:

Search exercises to find the exercise performed➤➤

Create custom exercises and add them to the journal➤➤

Browse available exercises by muscle group➤➤

View all exercises performed in a table-like format➤➤

Select from recent exercises as well as custom exercises➤➤

Because this page requires much of the same basic functionality provided in the food log, you can
probably use a screen that looks very similar to the food log in the design.

Measurement Log

In addition to entering foods and exercises, your users will need to keep track of their current mea-
surements. The measurement journal will provide the ability for users to keep track of the following
measurements:

Weight➤➤

Waist➤➤

Legs➤➤

Body Mass Index➤➤

534045c02.indd 82 3/13/10 4:53:13 PM

Solution ❘ 83

In addition to this list of measurements, it is also a requirement to provide the users with the ability
to keep and track custom measurements. In addition to this, one of the requirements was providing
a feature that lets the users upload an image and to associate it with the measurements being logged.
Everyday users should be able to enter current measurements and an image of themselves.

Public Fitness Journal

Now that users have a place to keep track of foods, exercises, and measurements related to their fit-
ness progress, you can turn your attention to providing them with a means to share that information
with others. The public fitness journal feature will provide a social networking aspect to the site by
giving users a way to share their food, exercise, and measurement logs with other users of the site, as
well as other users across the Internet. Users will need to be provided with a URL that will directly
access this public journal page. In addition to this important requirement, there are several others
that you will need to satisfy on this page, such as:

Display About Me text for the user➤➤

Display HTML-based comments from visitors who access the page➤➤

Provide a way for visitors to view nutrition, exercise, and measurement logs➤➤

Provide the ability to share uploaded measurement images➤➤

Provide the capability for users to customize what information if any will be made publicly ➤➤

available

Not all users will want to share their information with others so providing a settings screen will give
the user a way to turn on/off various aspects of their public journal. This is an important feature of
any social networking style site as you will never want to assume that a user wishes for his or her
information to be made public. In fact, the default implementation of the public journal will ensure
that all journals are private when the user registers with the site. It will be up to each individual user
to take the steps required to make their journal public to the rest of the Internet. The public journal
is a unique aspect of the site in that when a user is logged into the site they will have access to the
settings area of the journal along with access to the other various areas of the site. Users viewing the
journal from the direct URL will not see any other menu items or have any access to journal settings.
Those visitors will see only the public journal itself along with the site banner and footer areas.

solution

The solution section of this chapter involves making decisions on which technology you will use
for the FitnessTrackerPlus application. I won’t go into any implementation steps here as that will
be saved for the next chapter where you create the home page, signup, and login. But first, you still
have some important decisions to make. You have seen that the architecture is broken up into two
major areas: the physical tier and logical tier. In both cases, you will want to concentrate on using
technologies that help you create both scalable and maintainable websites. Let’s take a look at what
you will be using for both areas of the architecture, starting with the physical tier.

534045c02.indd 83 3/13/10 4:53:13 PM

84 ❘ ChaPter 2 PrePare to Be PoPular

Physical tier
I discussed earlier in the chapter that there are several different methods you can utilize in the physi-
cal tier. The most scalable architecture involves separate servers for each major tier. In that case, the
user’s Internet browser would be responsible for rendering the user interface, a physical application
server would handle running the business logic, and finally another physical server would host the
actual database where the data is being stored. This allows you to add physical servers to both the
business tier and database tier in order to scale the application.

For FitnessTrackerPlus, you will start out with one physical machine for everything. Your web
browser will handle the user interface and your machine will also host the business logic and data-
base. As you work toward deploying the application, you will move the business logic and database
to separate physical servers. For now, however, during the implementation of the site you will keep
everything on your personal machine. Obviously, this won’t scale well but right now you are the
only user so no worries here.

The only thing left to do is make a decision on the technology you will be using for the physical tier.
Because the goal of this book is to help you learn how to build a Silverlight line of business applica-
tion utilizing Microsoft-based technologies you will be using IIS as the application web server and
SQL Server Express for the database. That is not to say you couldn’t use another web server with a
Silverlight client or even Oracle XE as the database. Silverlight can consume SOAP-based web ser-
vices just fine so a Tomcat server would work just as well as far as the Silverlight client is concerned.
In fact, when you are finished with the book, it could even be a great learning experience to make
an attempt at running the site on Tomcat using Oracle XE or MySQL for the database. That just
about covers the decisions you need to make for the physical tier. Now you need to take some time
and figure out what to use for the logical tier. As you saw previously in the chapter, many technolo-
gies are available, all with various pros and cons, so it might take a little bit more time to make a
decision about this.

logical tier
The logical tier technology decisions now need to be made for the user interface, business logic, and
data access layers. I have already explained that my choice for the database layer will be SQL Server
Express Edition. This is a free version of the SQL Server database that has all of the required func-
tionality that you will need to create, test, and run the application. Should FitnessTrackerPlus gain
in popularity at a rapid pace, it will be no real extra effort to swap the Express Edition for one of
the more powerful editions that can handle additional CPUs and larger physical database files.

Making the decision for the user interface is the easiest place to start. The title of this book is
Silverlight 4 Problem-Design-Solution so it’s a pretty safe bet that Silverlight will be your user inter-
face of choice. It may be beneficial at some point in the future to look at what WPF thick clients
bring to the table and it could even be a future option to add as a premium feature of the site. For
now, however, you will be using Silverlight only during the development of the site.

For the business logic layer, I have covered what seems like an endless supply of choices. Should
you use ASMX SOAP-based web services with custom business objects? How about WCF services?

534045c02.indd 84 3/13/10 4:53:13 PM

Solution ❘ 85

ADO.NET Data Services offer a REST-based platform for accessing business logic so that must be
the way to go, right? After all, REST is one of the new buzzwords and many other sites offer REST-
based services for consumption. Or maybe the right answer is WCF RIA Services because they were
specifically aimed at Silverlight-based clients. In this book, you will be implementing the business
logic layer using the new WCF RIA Services platform. This was not an obvious choice, but I felt the
WCF RIA Services were the most compelling as they really had Silverlight in mind when RIA was
developed. The minimal amount of code required to get the business logic layer up and running
alone makes a compelling argument for using WCF RIA Services. In addition to this, I just couldn’t
ignore how simple it is to get client- and server-side validation through the use of the metadata
classes. This is an extremely powerful feature, and if you have ever spent long hours writing valida-
tion code, you know that it is not very exciting and typically can be error prone. If you are looking
for a fast yet flexible way to create the business logic layer, the WCF RIA Services provide you with
exactly that.

Finally as far as the data access layer, I could no longer justify the use of traditional ADO.NET data
access for this application. The introduction of ORM technologies has made it significantly easier to
access data and for an application such as FitnessTrackerPlus, you would be much better off worry-
ing about user interface and business logic issues than creating plumbing code for database access.
Now the choice of which ORM technology to use is much more difficult.

On the one hand, LINQ to SQL is still being supported and, in fact, works quite well with the WCF
RIA Services platform that you will be using in the business logic layer. On the other hand it is lim-
ited in that it supports only SQL Server. This was perhaps the hardest choice that had to be made for
FitnessTrackerPlus. If you have followed the conversations online in various blogs and forums, you
will see that there are many developers who feel that the Entity Framework in many ways is bloated
and difficult to use in anything but an enterprise scenario or if a database other than SQL Server
needs to be supported. Many developers feel that LINQ to SQL just works better and does what devel-
opers need it to do without being overly complex. Of course, there is always the worry that while
making enhancements to the Entity Framework, at some point Microsoft will just drop support for
LINQ to SQL.

Ultimately I made the decision to create the data access layer using LINQ to SQL for a variety of
reasons:

My general experience with LINQ to SQL has matched that of many other developers in that ➤➤

it provides exactly what you are looking for from an ORM technology. Some complex query
scenarios that are required for FitnessTrackerPlus just work in LINQ to SQL and for some
reason require much more complicated coding solutions when using the Entity Framework.

One major reason for sticking with LINQ to SQL is the fact that at least currently it runs ➤➤

much faster than the Entity Framework. There have been many benchmarks done online
comparing the two technologies and at least in the current implementations LINQ to SQL
almost always outperforms the Entity Framework in every test. That is not to say that with
the release of .NET 4 improvements to the Entity Framework won’t make those performance
tests obsolete, but at the time of this writing the Entity Framework simply does not win the
performance race.

534045c02.indd 85 3/13/10 4:53:14 PM

86 ❘ ChaPter 2 PrePare to Be PoPular

Another important consideration for using LINQ to SQL is that you will be using SQL Server ➤➤

exclusively for this book so you do not have to be concerned with third-party database sup-
port. In fact, another thing to consider is that there is currently no free Oracle or MySQL
provider that fully supports Entity Framework implementations. Where possible, I wanted
to keep the cost of developing this site as close to free as possible. Utilizing a free database
engine such as Oracle XE or MySQL would be rather pointless if you then had to go out and
purchase a third-party driver that supported using the database with the Entity Framework.

summary

Well this chapter covered a ton of information. You have seen how the physical and logical tier
design is an important step to complete before moving on to any implementation phase. For the
logical tier design, you have seen a large number of technologies that are at your disposal for the
user interface, business logic, data access, and database layers. The powerful new data controls in
Silverlight will be utilized to make a rich data entry interface to the FitnessTrackerPlus application.
I have also shown you how you can satisfy some of the more difficult requirements by combining
the base Silverlight controls with those found in the Silverlight Toolkit. For the business logic layer,
there were many different options including ASMX web services, WCF services, ADO.NET Data
Services, and the new WCF RIA Services that were specifically geared toward solving some of the
N-Tier design issues that can come up with disconnected Silverlight applications. For the data access
layer you were shown how the introduction of ORM technology such as LINQ to SQL and the
Entity Framework have greatly simplified the amount of work that goes into the creation of a data
access layer.

In addition to being introduced to all of these new technologies, solid decisions were made about
which of them will be used in the creation of the FitnessTrackerPlus application. During the next
group of chapters, you will be making use of Silverlight controls, Silverlight Toolkit controls, WCF
RIA Services, LINQ to SQL, and SQL Server Express all to build a solid line of business application
that will be able to handle many users and provide quick and painless data entry functionality to your
users. With the design out of the way, you can finally move on to the fun and exciting stuff — the
code! There is no time like the present so let’s get started and create a home page where users can
not only find out more about the application but also register with the site and immediately start
to reap the benefits of their new membership.

534045c02.indd 86 3/13/10 4:53:14 PM

Sign Me Up
Using Membership, Authentication, and Profile
Services in Silverlight

In the previous chapter, I covered many of the new technologies available for Silverlight devel-
opment. The solution section offered some choices as to which technologies to use during
the development of the FitnessTrackerPlus application. Now you will finally see some of
the technologies in action as you begin to implement the actual site. It is always best to lever-
age as many existing services as possible when creating a new site and ASP.NET has offered
several services to facilitate common website tasks such as login, registration, and profile
management. Even though you will be developing a Silverlight application, you can still take
advantage of the services that are provided by ASP.NET rather than reinventing the wheel. By
the end of this chapter, you will have a good working knowledge of how to combine the exist-
ing ASP.NET services for Authentication, Membership, and Profile management with the new
WCF RIA Services to create a fully working login, and member registration area.

In addition to providing some of these common services to your users, it is also important
that this site functions like a traditional website as much as possible. This site should provide
integration with the browsers back and forward buttons as well as browser history. In this
chapter, you see how the new navigation framework provides you with the tools necessary
to ensure that the user experience on this Silverlight site offers the same browser integration
available at traditional websites — just with a much richer user interface.

Problem

If you have ever done any work developing a website you no doubt have had to solve some
common design problems. For example, how will users access protected pages? How will users
register to use the site and how will you let users reset a lost or forgotten password? For the
most part, if you were using ASP.NET, you probably made use in one way or another of the

3

534045c03.indd 87 3/13/10 4:52:29 PM

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

88 ❘ ChaPter 3 Sign Me Up

Membership, Authentication, and Profile services. These services provided an easy solution to the
common design problems listed, and even included several user interface controls that were tightly
integrated with those services. The ASP.NET Membership service consists of a provider-based
model that has built-in support for managing users in a SQL Server database. Because the model
was provider-based, it isn’t terribly difficult to make the modifications required to support other
databases, such as Oracle or MySQL as well. The Authentication service provides an easy way to
handle login/logout scenarios and the Profile service contains a provider-based model for storing
and retrieving individual user properties from a database table. As in the case of the Membership
service, the Profile service can be overridden to work against just about any other database provider.

These services have been a great addition to the ASP.NET framework and have saved developers
from countless hours of developing proprietary user management code libraries. You, however, are
developing a Silverlight application that basically consists only of one ASP.NET page whose sole
responsibility is to host the Silverlight plug-in. FitnessTrackerPlus requires all of the same functional-
ity that any other traditional website would have to offer, but developing a completely new mecha-
nism for site authentication and user management would make the development of this site pretty
painful. Not to mention these features really aren’t related to the business problem that you are try-
ing to solve with the site; so rather than spend a ton of up-front time trying to create these services
from scratch, you need to find a way to leverage the existing ASP.NET services.

Once you solve the problem of user management and authentication you will need to move on to mak-
ing the site feel like a traditional website that provides tight integration with the web browser. You
may have been to some Flash-based sites in the past and moved through some data entry screens only
to realize that you made a mistake on a previous step, or maybe just needed to review data from a
previous page. You see the large flashing warning sign that says “Click this link to go back,” but you
ignore it anyway because the browser’s Back button is practically screaming “CLICK ME INSTEAD.”

Sadly, instead of reaching the previous destination page you are greeted with the home page of the
site, or worse some cryptic error message page. Oh well — a simple click of the Forward button and
you should be back in business. Unfortunately, instead of the page from which you initially started
this process, you’re again greeted with some other error page. This happens all too often and is the
direct result of developers not offering tight integration with the existing web browser controls. It’s
great to take the time and provide a nice hyperlink that brings the user to the previous page while
retaining all the information that the developer needs for the page to work correctly, but the real-
ity is that users know the browser controls. You cannot expect that every user is going to use the
custom navigation links that you provide. You do not want the users of FitnessTrackerPlus to go
through this same annoyance just because they are interacting with a Silverlight-based site. You will
need to ensure that, at any time, if a user clicks the Back or Forward buttons, the site will do exactly
what is expected, which is to actually go to the previous or next page of the site.

Finally, the development of the FitnessTrackerPlus home page presents a unique problem. If users
hit the home page and do not already have Silverlight installed, by default, they are presented with
a generic installation page for the Silverlight plug-in with no explanation as to what Silverlight is or
why they see an installation page instead of an online fitness tracking site. As you saw in the previ-
ous chapter, the Silverlight plug-in offers a PluginNotInstalledTemplate property that you must
use to provide visitors with a standard HTML version of the home page that looks similar to what
they would have seen if the plug-in had already been installed. There should also be some basic
instructions about what Silverlight is and how users can install it.

534045c03.indd 88 3/13/10 4:52:29 PM

Design ❘ 89

Design

Now that you have a few different problems outlined that need to be solved, it’s time to start think-
ing about designing solutions to these problems. This chapter, along with the next few, will involve
design and implementation of the user interface, database, data access, business logic, and code
behind layers. I will be covering each area as its own separate topic based on the feature that is
being implemented.

In a perfect world, you might design and implement the data access layer followed by the business
logic and wrap things up with the user interface. Everything would link up together perfectly and
all of the business objects you designed would work out exactly how the user interface requires them
to be. In practice, I have yet to see this actually happen. In most cases, unless you are part of a large
development team, this kind of design and implementation just does not take place. If you are part
of a small team or if you are the only developer, as is the case with FitnessTrackerPlus, it can become
pretty overwhelming to design and implement a layer at a time only to find out that the user inter-
face requires things that you hadn’t thought of during the initial design stage.

FitnessTrackerPlus has a pretty extensive list of requirements. I feel that for this application it is best
to list the requirements and features that will be needed and then pick a feature and work your way
through the various layers required to create that feature. For example, this chapter will require a
login and user registration feature. Rather than present you with the entire FitnessTrackerPlus data-
base design followed by the entire data access and business logic layers, I will instead show you the
design and implementation of those layers related to only the login and registration features; each
individual site feature will have its own separate coverage for each of the logical layers in the order
shown that follows:

User interface➤➤

Database➤➤

Data access➤➤

Business logic➤➤

User interface code behind➤➤

The user interface code behind logic that I am referring to covers any control event handlers and
business logic required for those event handlers. With that out of the way, let’s take a look at some
of the requirements that were outlined in the previous chapter and make sure that the design satis-
fies all of them. The following is a list of the basic requirements that need to be satisfied for this
chapter:

The site requires a user-friendly home page that briefly outlines the benefits of using the site, ➤➤

along with a screenshot of the site in action.

Users should be able to find a link to the main site registration from the home page.➤➤

Users should have easy access to all supplemental pages of the site such as the privacy policy, ➤➤

terms of service, contact, and about pages.

534045c03.indd 89 3/13/10 4:52:30 PM

90 ❘ ChaPter 3 Sign Me Up

All supplemental pages should be implemented in XAML and the user should stay in the ➤➤

Silverlight application at all times. The only traditional ASP.NET page that should be visible
to users is the main page that hosts the Silverlight plug-in.

Users that visit the home page should be able to log in to the site if they have already reg-➤➤

istered. Login should accept the user’s primary e-mail address so that they do not have to
remember yet another unique username.

Users that decide to register for the site should have to provide only a minimal amount of ➤➤

information such as e-mail address and password. Passwords and security answers should
be stored in an encrypted format that nobody else can access. This means even site administra-
tors should not have access to this data. Any password or security information should be
encrypted using a one-way hash.

Although this is not a banking site, and you are not really storing any sensitive
information, it is sometimes just easier to tell your users that even you can’t
access the password. This leaves users with the impression that your site is tak‑
ing all necessary precautions with data. To some users, even the e‑mail address
is considered sensitive and the fact that, as a site administrator, you can’t view
the password can go a long way in establishing a trustful relationship with your
users — especially should you decide to add features in the future that do require
more sensitive user information.

Once logged in, the user should be presented with a dashboard page, which, at this point, is ➤➤

just an empty placeholder page with a logout button

The dashboard page, and any other pages that require a login, should be locked down and ➤➤

unavailable to anonymous users.

Users who hit the FitnessTrackerPlus home page and do not have the Silverlight plug-in installed ➤➤

should be presented with an HTML version of the site that provides a link to download the
plug-in as well as a description of what the site offers. This alternate view should look as
similar to the Silverlight version as possible. The alternate view should not, however, provide
access to any areas of the site other than the privacy policy and terms of service, which still
need to be enabled should users want to review those policies before making a decision to
install the plug-in.

home Page
The home page for FitnessTrackerPlus will be the first thing that the users encounter when visiting
the site. This page has a couple of primary roles, including access to login, user registration, supple-
mental pages, and an overview of the site features. As promised, I will be splitting up the design
discussion of the home page into the logical layers outlined previously.

534045c03.indd 90 3/13/10 4:52:30 PM

Design ❘ 91

User Interface

In the previous chapter, I showed you a quick pencil sketch of what the home page should look like.
It’s time to get a little bit more specific. The latest trend in Web 2.0-style websites is to provide a
home page that is not cluttered with slick graphics that can be confusing to the users. This works
out great for me as I have no artistic ability anyway — so the simpler the better. This page just needs
a logo area, login control, screenshot, feature list, registration link, and links to any supplemental
pages. It would be best if you followed the sketch that was created earlier and have the banner and
login at the top, the screenshot and feature list in the middle, and finally, the supplemental links in
the footer area of the page along with any copyright information.

It seems desirable to include the banner and footer areas throughout the site, and traditional ASP.
NET sites could make use of the MasterPages feature so that the header and footer areas could be
reused throughout the site with no extra work for the developer. Although Silverlight does not have
MasterPages, it does now provide the new navigation framework that I outlined in the previous
chapter. In this case, you will want to add a Frame control to the home page with the banner above
and footer below. This Frame control is responsible for hosting all of the site content. The beauty of
using the Frame control is that you have full support of the browser’s Back, Forward, and History
features. When users navigate to the embedded page views, they can simply click the Back button
on the browser to return to the previous page with absolutely no additional code being written. This
satisfies one of the main requirements of the application, which was to provide a site that has the
rich user interface benefits of Silverlight while maintaining traditional ASP.NET page navigation
behavior.

Site content needs to reside in controls that derive from the new Page class available in the System
.Windows.Controls namespace. These Page controls will all sit under the Views folder that was
initially created with the new Navigation project template. The default Page control that should display
on the Frame will be called Home and should consist of the screenshot, feature text, and, of course, a
button that provides a large visual link to the user registration page.

The final aspect of the user interface that needs to be ironed out is how to support users that do
not have the Silverlight plug-in installed. These users should see an HTML version of the home
page that does not include the registration link, or the login control. You should be able to utilize the
PluginNotInstalledTemplate of the Silverlight control to handle the display of this alternate page.
The plug-in will automatically detect if the user currently has Silverlight installed and, if not, it will
display any HTML you place in that template.

Database, Data Access

I won’t often combine the database and data access in the same section, but in the case of the home
page there really isn’t any database or data access layer design necessary. At this point, you are only
creating pages with static content and basic navigation. There are no related database tables that are
essential for the banner, home view, or footer areas.

Business Logic, User Interface Code Behind

For the home page it is safe to combine the business logic and user interface logic into one area as
well. Because there will not really be any business entities or data associated with the home page,

534045c03.indd 91 3/13/10 4:52:30 PM

92 ❘ ChaPter 3 Sign Me Up

there won’t be much in the way of business logic required either. For the user interface logic you will
need something to handle the navigation frame events.

User registration
The next major feature that needs to be designed is the user registration system. The goal for this
design is to create a user-friendly signup page that collects only the minimum amount of data from
the visitor that is necessary to use the application. Another goal for this feature is to find a way to
make use of the existing ASP.NET Membership, Role, and Profile providers so that you don’t have
to create registration code from scratch.

User Interface

When thinking about the user interface for the user registration page you want to ensure that you
are only collecting information that is needed for visitors to use the site. Through the years I have
registered for many different websites and have accumulated countless usernames and passwords.
Sometimes I see sites that get the signup page right and ask for minimal information while others
require just about every piece of information imaginable. Whenever I encounter a site that wants to
know more about me than the IRS, I get a little worried. If I really am interested in using the site,
I may just give in and provide the information but I will also be watching my Inbox for a deluge of
spam e-mails that mysteriously appear after registering with the site.

Unless you are creating an online banking site or utility site that collects bill payments and you
need detailed information about your users, there is just no legitimate reason to collect more data
than you actually need for the user to utilize the site. For FitnessTrackerPlus this means requiring
an e-mail address, password, and a security question/answer combination that the user can utilize
if they need to reset a password. You may be wondering why I chose not to use a username in this
case; as your users register at more and more sites it can become increasingly difficult to manage all
those usernames and passwords. In many cases, the username that the user is looking for is already
taken, which can result in user frustration. Most users have one primary e-mail address. By allow-
ing the use of an e-mail address as opposed to forcing the creation of a unique username for logging
in gives the user one less thing to remember in order to use your site. It may take a little bit of addi-
tional work during the coding stage, but I really do think your users will benefit greatly by having
one less thing to remember.

Database

In ASP.NET-based websites, you have the option of utilizing the standard membership tables cre-
ated by the aspnet_regsql tool. This tool creates several database tables that you can use to store
membership information. If you take a look across the Internet you will see an endless supply of
tutorials regarding the design of these tables as well as how to interact with the standard ASP.NET
Membership and Profile providers. For the most part, unless you’re creating a site from scratch, very
rarely do you encounter a real-world scenario where you can actually use these tables and the stan-
dard Membership providers that come with ASP.NET. Sometimes you don’t even have any control
over, or input into, the design of the database tables. Although FitnessTrackerPlus is being created
from scratch and would seem to fit the criteria for using the default tables, I have decided against it
in favor of a custom database schema. This not only gives the application a little bit more flexibility
in the long run but also presents an opportunity to learn how to write custom providers for the

534045c03.indd 92 3/13/10 4:52:30 PM

Design ❘ 93

Membership, Profile, and Role services. I don’t necessarily want to create more work, but in real-world
situations, more often than not, you have to make use of a custom database schema so being familiar
with how to create these providers can come in handy, and it really isn’t that much extra work.

For a more in‑depth look at the ASP.NET Membership, Profile, and Role services
you should check out ASP.NET 2.0 Problem – Design – Solution from Wrox Press.
The author, Marco Bellinaso, does a terrific job of explaining the standard
ASP.NET database tables as well as the internals of the provider‑based model
that is available in ASP.NET 2.0 for creating custom Membership, Role, and
Profile providers.

The tables you’ll use for FitnessTrackerPlus are somewhat similar to the standard ASP.NET
Membership tables with a few exceptions. For example, the user ID field is an integer set up as an
identity field. The standard ASP.NET Membership tables utilize a GUID for its implementation of
a unique ID. I decided against this for one major reason — cost. As you look into having your site
hosted, you may decide to start with a shared hosting solution until your site gains in popularity.
Shared hosting sites typically charge for database storage and the cost of that storage is a premium.
If you stick with the GUID-style implementation for a unique key, then you will be using an expen-
sive data type for a field that potentially will appear as a foreign key in many other tables through-
out the database. You will not want to absorb the cost of this when using a shared hosting provider.

Some will argue that the use of a GUID data type makes data migration easier in the future, but
because this site is being created from scratch I don’t think that benefit outweighs the potential stor-
age costs associated with the GUID. There are many other fields that are in the standard ASP.NET
Membership tables that you will not see in the FitnessTrackerPlus tables. This is by design to save
money and space when running the site from a shared hosting provider. It is not uncommon to have
only 100MB of database storage from a shared hosting provider; increasing the size of the database
can become a costly addition to any hosting plan. This may at first seem like plenty of space, but if
your site gains in popularity quickly, you will appreciate optimized tables that use the least amount
of required space. Tables 3-1 through 3-6 list information you’ll use for setting up user registration
in FitnessTrackerPlus.

table 3-1: users

ColUmn name tyPe DesCriPtion

id intr Unique identity field for users

email_address varchar(256) Primary e‑mail address for the user

username varchar(100) Unique username generated as a combination of e‑mail

address up to the “@” symbol plus the value of the ID

column

password varchar(256) SHA1 hash representation of password

locked bit Shows if user account is currently locked

continues

534045c03.indd 93 3/13/10 4:52:31 PM

94 ❘ ChaPter 3 Sign Me Up

ColUmn name tyPe DesCriPtion

locked_date datetime Shows date that account was locked

last_login_date datetime Last time user performed a successful login

created_date datetime Date user account was created

account_type int Type of account created for user

ip_address varchar(100) Unique Internet address of user

security_question int Security question selected by user

security_answer varchar(256) SHA1 hash representation of answer to security question

online bit Shows if user is currently logged in to the site

disabled bit Used as an alternative to deleting accounts

table 3-2: account_types

ColUmn name tyPe DesCriPtion

id int Unique identity field for account type

type_name varchar(100) Name of account type — currently only FREE and PREMIUM

description varchar(256) Description of account type

table 3-3: security_questions

ColUmn name tyPe DesCriPtion

id int Unique identity field for security question

question varchar(256) Question text

table 3-4: roles

ColUmn name tyPe DesCriPtion

id int Unique identity field for role

name varchar(256) Name of role (currently the only roles are Admin and User)

description varchar(256) Description of role

table 3-1: users (continued)

534045c03.indd 94 3/13/10 4:52:31 PM

Design ❘ 95

table 3-5: users_roles

ColUmn name tyPe DesCriPtion

id int Unique identity field for user‑role relationship

user_id int Unique identity of user

role_id int Unique identity of role

table 3-6: profile

ColUmn name tyPe DesCriPtion

id int Unique identity field for profile record

current_theme varchar(100) Full name of preferred theme

user_id int Unique identity of user

Data Access

The data access layer will consist of LINQ to SQL classes that are generated for the tables outlined
in the previous section. Remember that LINQ to SQL class mappings always provide a 1:1 relation-
ship with tables; you should expect there to be classes generated that represent users, roles, security
questions, account types, and even a users-roles entity that represents the join table assigning users
to various roles.

You will also want to rename the generated LINQ to SQL class mappings because some of the gen-
erated classes may conflict with built-in types of the ASP.NET Membership feature. For example,
the users table will result in a user LINQ to SQL class. Having a user class will become confusing
as you start to look at the WCF RIA Service’s support for authentication, which utilizes a UserBase
and UserService class of its own. To avoid any confusion, you should just capitalize the generated
classes and change the users table to UserInformation. This way, it will be obvious when you are
interacting with one of your custom-generated types versus one built into the runtime.

Business Logic

The new WCF RIA Services provide built-in support for interacting with the ASP.NET Authentication,
Membership, and Role mechanisms. By using the WCF RIA Services, you will have an easy mechanism
to access these ASP.NET services from a Silverlight client. Because you are not using the standard
ASP.NET Membership table mechanism, the business logic will require custom implementations of the
Membership, Profile, and Role providers. The custom membership provider will need to implement all
the required methods and properties of the MembershipProvider interface.

You may also notice that many of the ASP.NET Membership, Profile, and Role interface methods
utilize the username as a parameter for retrieving data from the various providers instead of an
identity field or your primary key column. Therefore, it is still very much necessary to provide a

534045c03.indd 95 3/13/10 4:52:31 PM

96 ❘ ChaPter 3 Sign Me Up

username column in the database that is unique for every user of the site. In order to facilitate
this without forcing the user to create a username during registration, the business logic will
need to automatically create a unique username and store it in the database when the user infor-
mation is created. The easiest way to provide this is to take the first part of the e-mail address up
to the “@” symbol and combine it with the unique ID value that is generated from the identity
column in the users database table. For example, creating my own account with an e-mail address
of nick@fitnesstrackerplus.com would result in a username of nick1 being stored in the data-
base if I were the first user to register with the site. Again, the user will not need to remember this
username except when providing friends with the unique URL to their public version of the journal.
In my case, that URL might end up being something similar to http://www.FitnessTrackerPlus
.com/Journals/nick1.

The ASP.NET Membership feature provides several ways to create and store passwords in your
database. Password storage is configured in the membership section of the web.config file using the
passwordFormat attribute. This attribute provides the choices in Table 3-7 for password creation
and storage.

table 3-7: ASP.NET Membership Password Storage

Format DesCriPtion

Clear Stores the password in clear‑text format. This option is for sites that require minimal

security. Anyone with access to the user table in the database could potentially

view the password of any user including the site administrator in clear text.

Encrypted Stores the password in encrypted format. Offers higher layer of security than Clear.

Passwords can be recovered using a decryption key. In a web farm or load‑

 balancing scenario, the encryption key must be configured the same on all

 available servers.

Hashed Creates an SAH‑1 hash value of the password text and stores that value in the data‑

base. The actual password text is lost and cannot be recovered. It offers the highest

layer of security, and passwords can only be reset, not recovered.

Although you will not be collecting any sensitive information in the FitnessTrackerPlus application,
it’s still better to be safe than sorry. You will be using hashed values for passwords in the database
which means that you will not be able to decrypt and recover the original password text. The pass-
word recovery system for this site is more along the lines of a password reset feature. Users can have
a new random password generated and sent to their e-mail address. Once users receive the e-mail,
they can simply log on to the site with the newly generated password and change it to something
that is easier to remember in the account settings page. You could argue that the lack of sensitive
stored information allows the use of the two-way encryption model, but I still feel it all comes back
to trust; if a user contacts you about a missing password and you can say to them that even you as
the site administrator cannot access it, he or she will feel that much safer about using the site. It is
a small matter of inconvenience to have the user log in with the generated password once and then
reset it to something else, but as your site increases in popularity, more often than not, users will
appreciate the fact that all their information is safe — especially their login information.

534045c03.indd 96 3/13/10 4:52:31 PM

Design ❘ 97

As far as roles go in the site, there will really be only two possible roles for now. All users will belong
to the User role when an account is created. In addition, the site administrator will be added to the
Admin role, which could be used in the future to handle user administration tasks.

Although you will be creating a custom profile provider, there is really only one property that will
be available from the provider at this point, and that is the CurrentTheme. The standard mechanism
for profile storage in traditional ASP.NET websites is to include all of the profile properties in an
XML-based string in the database. I have gone with a slightly different route here by creating a pro-
file table where each profile property is a separate column in the table. By doing this, you can mini-
mize the space required by the profile, eliminating the overhead of additional XML tags.

User Interface Code Behind

The user registration page has one event handler that will need to be implemented and that is for the
actual registration button click. In this handler, you will need to validate all the collected information
and create a new user account in the database with the supplied values. Any errors that occur during
this process should be presented to the user. Although you could redirect the user back to the main
home page upon successful registration, I find it more useful to just log the user into the system at
that point and move them forward to the dashboard page. No need to force the user to take an addi-
tional login step in order to proceed if it can be avoided.

login Control
Although technically part of the home page, I decided it would be best to discuss the login control
as a separate feature. Any time there is a standalone control required during the development of
FitnessTrackerPlus, I will try to discuss that control as a feature in of itself. The login control will be
located in the banner area of the home page and will provide the necessary functionality for users to
log in to the site.

User Interface

Not much is required in the design of the login control’s user interface. You will need an area for the
user to enter his or her e-mail address as well as a password. If a user enters incorrect login information,
the error should be displayed below the control in red so that it stands out as an error. Whenever
possible, you should attempt to provide a meaningful error message to the user on a failed login.

Database, Data Access

No additional tables are required for the login control as it will simply make use of the existing tables
created for the user registration page. In fact, the only table that the login control actually will
require is the users table, which contains the e-mail address and encrypted password. As far as the
data access layer, the login control should be able to make use of any classes created for the user
registration page.

Business Logic

Because the login control is a completely separate control from the home page, it will need a way to
communicate with the parent control. The best way to provide this functionality is through the use

534045c03.indd 97 3/13/10 4:52:31 PM

98 ❘ ChaPter 3 Sign Me Up

of events. The login control should have a public event that the parent control can listen for and act
upon when the login is successfully completed. Because the control itself will be handling the pre-
sentation of any error messages to the user, it is not really necessary to notify the parent control of
any failed login.

User Interface Code Behind

The only required user interface logic for this control is really handling a click event from the sub-
mit button that is part of the control. This event will need to take the e-mail address and password
supplied by the user and validate it against what is currently stored in the database. The control
will need to interact with some kind of Authentication service on the server in order to perform the
login.

solUtion

The solution section of this chapter covers the creation of the home page, home view, login control,
and user registration page. Like the design section, each individual feature will be covered in its own
section separated into the user interface, database, data access, business logic, and user interface
code behind.

main landing Page
At the end of the first chapter, you created a new Silverlight navigation application. The creation of
that project resulted in several pages being added that are no longer needed. You can safely delete all
of the pages that were included in the project as well as any files that exist under the Views folder. In
order to add the main landing page to the project, you will need to add a new UserControl to the
root of the Silverlight project, and call it MainPage.xaml. Because the old application structure did
not use a MainPage.xaml file you also need to update the Application_Startup event handler in
the App.xaml file so that a new instance of MainPage is created and run when the application starts.

User Interface

The landing page itself does not include much in the way of functionality other than a banner area,
navigation frame, and footer area. Listing 3-1 shows the complete XAML code for the main landing
page of the site.

listing 3-1: MainPage.xaml

<UserControl x:Class=”FitnessTrackerPlus.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:navigation=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation”
 xmlns:toolkit=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Toolkit”
 xmlns:controls=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls”
 xmlns:fitnesstrackerplus=”clr-namespace:FitnessTrackerPlus.Controls”>

534045c03.indd 98 3/13/10 4:52:32 PM

Solution ❘ 99

 <UserControl.Resources>
 <LinearGradientBrush x:Key=”ApplicationBackgroundBrush”
EndPoint=”0.5,1” StartPoint=”0.5,0”>
 <GradientStop Color=”#FFFFFFFF”/>
 <GradientStop Color=”#FF77A9D4” Offset=”1”/>
 </LinearGradientBrush>
 <Style x:Key=”BannerAreaStyle” TargetType=”toolkit:DockPanel”>
 <Setter Property=”Height” Value=”125” />
 <Setter Property=”LastChildFill” Value=”False” />
 <Setter Property=”VerticalAlignment” Value=”Top” />
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Top” />
 </Style>
 <Style x:Key=”LogoBackgroundStyle” TargetType=”Border”>
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Left” />
 </Style>
 <Style x:Key=”LogoImageStyle” TargetType=”Image”>
 <Setter Property=”Source” Value=”/Images/logo.png” />
 <Setter Property=”Width” Value=”300” />
 <Setter Property=”Height” Value=”80” />
 <Setter Property=”Stretch” Value=”Fill” />
 <Setter Property=”VerticalAlignment” Value=”Top” />
 </Style>
 <Style x:Key=”LoginControlStyle”
TargetType=”fitnesstrackerplus:Login”>
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Right” />
 </Style>
 <Style x:Key=”MainFrameAreaStyle” TargetType=”navigation:Frame”>
 <Setter Property=”Source” Value=”Home” />
 <Setter Property=”HorizontalContentAlignment”
Value=”Stretch” />
 <Setter Property=”Margin” Value=”0,10” />
 </Style>
 <Style x:Key=”FooterAreaStyle” TargetType=”StackPanel”>
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Bottom” />
 </Style>
 <Style x:Key=”FooterLinksAreaStyle” TargetType=”StackPanel”>
 <Setter Property=”Orientation” Value=”Horizontal” />
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 </Style>
 <Style x:Key=”FooterTextStyle” TargetType=”TextBlock”>
 <Setter Property=”Foreground” Value=”#FFFFFFFF” />
 <Setter Property=”FontSize” Value=”12” />
 </Style>
 <Style x:Key=”FooterLinksStyle” TargetType=”HyperlinkButton”>
 <Setter Property=”Foreground” Value=”#FFFFFFFF” />
 <Setter Property=”FontSize” Value=”12” />
 </Style>
 <Style x:Key=”CopyrightTextStyle” TargetType=”TextBlock”>
 <Setter Property=”Text” Value=”FitnessTrackerPlus
Copyright 2009–2010 All Rights Reserved” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 </Style>

continues

534045c03.indd 99 3/13/10 4:52:32 PM

100 ❘ ChaPter 3 Sign Me Up

 </UserControl.Resources>
 <ScrollViewer x:Name=”MainScroll” Background=”{StaticResource
ApplicationBackgroundBrush}”>
 <toolkit:DockPanel LastChildFill=”True”>
 <toolkit:DockPanel Style=”{StaticResource
BannerAreaStyle}” Height=”Auto”>
 <Border Style=”{StaticResource LogoBackgroundStyle}”>
 <Image Style=”{StaticResource LogoImageStyle}” />
 </Border>
 <fitnesstrackerplus:Login x:Name=”LoginControl”
Style=”{StaticResource LoginControlStyle}” />
 </toolkit:DockPanel>
 <StackPanel Style=”{StaticResource FooterAreaStyle}”>
 <StackPanel Style=”{StaticResource
FooterLinksAreaStyle}”>
 <HyperlinkButton x:Name=”HomeLink”
NavigateUri=”Home” TargetName=”MainSiteFrame” Content=”Home”
Style=”{StaticResource FooterLinksStyle}” />
 <TextBlock Text=”|” Style=”{StaticResource
FooterTextStyle}” />
 <HyperlinkButton x:Name=”SignupLink”
NavigateUri=”Signup” TargetName=”MainSiteFrame” Content=”Signup”
Style=”{StaticResource FooterLinksStyle}” />
 <TextBlock Text=”|” Style=”{StaticResource
FooterTextStyle}” />
 <HyperlinkButton x:Name=”PrivacyLink”
NavigateUri=”Privacy” TargetName=”MainSiteFrame” Content=”Privacy
Policy” Style=”{StaticResource FooterLinksStyle}” />
 <TextBlock Text=”|” Style=”{StaticResource
FooterTextStyle}” />
 <HyperlinkButton x:Name=”TermsLink”
NavigateUri=”Terms” TargetName=”MainSiteFrame” Content=”Terms of
Service” Style=”{StaticResource FooterLinksStyle}” />
 <TextBlock Text=”|” Style=”{StaticResource
FooterTextStyle}” />
 <HyperlinkButton x:Name=”AboutLink”
NavigateUri=”About” TargetName=”MainSiteFrame” Content=”About”
Style=”{StaticResource FooterLinksStyle}” />
 <TextBlock Text=”|” Style=”{StaticResource
FooterTextStyle}” />
 <HyperlinkButton x:Name=”ContactLink”
NavigateUri=”Contact” TargetName=”MainSiteFrame” Content=”Contact”
Style=”{StaticResource FooterLinksStyle}” />
 </StackPanel>
 <TextBlock Style=”{StaticResource
CopyrightTextStyle}” />
 </StackPanel>
 <navigation:Frame x:Name=”MainSiteFrame”
UriMapper=”{StaticResource UriMap}” Style=”{StaticResource
MainFrameAreaStyle}” />
 </toolkit:DockPanel>
 </ScrollViewer>
</UserControl>

listing 3-1 (continued)

534045c03.indd 100 3/13/10 4:52:32 PM

Solution ❘ 101

There are a couple of points to note about the preceding code. First, notice how the main container
for the page is a ScrollViewer. Although you can rely on the browser scrollbar for scrolling large
pages in a traditional ASP.NET website, it will not always work when you have large flowing areas of
Silverlight content. In the ASPX file that is hosting the control, the Silverlight plug-in has its width
and height set to 100 percent. This means that the plug-in will fill in the entire available browser
area. This works great until your Silverlight content becomes larger than the available space in the
browser window. Because you are using a navigation frame that stretches to fit its internal content,
you have no way of knowing in advance how large that content will be.

By placing all the home page controls in a ScrollViewer, you can ensure that the users will be able
to scroll through any Silverlight content that is too large to fit in the browser window. The only
drawback to this is that now you have two scrollbars visible to the user, which doesn’t really look
that great. This can be solved by disabling the browser’s scrollbar with just a few lines of CSS code
in the HTML and body tags of the FitnessTrackerPlus.aspx page that hide any overflow. Listing 3-2
shows the updated FitnessTrackerPlus.aspx page

listing 3-2: FitnessTrackerPlus.aspx

<%@ Page Language=”C#” AutoEventWireup=”true” %>

<%@ Register Assembly=”System.Web.Silverlight”
Namespace=”System.Web.UI.SilverlightControls” TagPrefix=”asp” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”
style=”height:100%;overflow:hidden;”>
 <head id=”Head1” runat=”server”>
 <title>FitnessTrackerPlus</title>
 </head>
 <body style=”height:100%;margin:0;overflow:hidden;”>
 <form id=”Form1” runat=”server” style=”height:100%;”>
 <div style=”height:100%;”>
 <object data=”data:application/x-silverlight-2,”
type=”application/x-silverlight-2” width=”100%” height=”100%”>
 <param name=”source”
value=”ClientBin/FitnessTrackerPlus.xap”/>
 <param name=”minRuntimeVersion”
value=”3.0.40624.0” />
 <param name=”autoUpgrade”
value=”true” />
 </object>
 <iframe id=”_sl_historyFrame”
style=”visibility:hidden;height:0px;width:0px;border:0px”>
 </iframe>
 </div>
 </form>
 </body>
</html>

534045c03.indd 101 3/13/10 4:52:32 PM

102 ❘ ChaPter 3 Sign Me Up

You now have everything in the ScrollViewer control, and if you run the site, you will be able to
easily scroll when Silverlight content is larger than the available viewing area. Thanks to one of the
most important enhancements to Silverlight 4, you can even scroll easily using the mouse wheel. In
previous versions of Silverlight, there was no support for the mouse wheel and users had to resort
to dragging the scrollbar with the mouse or clicking the arrow icons on each end of the scrollbar. I
don’t know about you, but I haven’t done this since Netscape Navigator was popular.

Silverlight Not Installed

Now that you have the XAML code for the landing page set up, it’s time to get back to another
important area of the home page. One of the initial requirements of the site was to provide a ver-
sion of the home page that users who did not have the Silverlight plug-in installed could access. You
want this to resemble the Silverlight version as much as possible. This is accomplished by embedding
an HTML DIV tag in the Silverlight object declaration that includes the entire HTML you wish to
display to visitors who do not currently have the plug-in installed. In the case of FitnessTrackerPlus,
you want to provide HTML that closely resembles what visitors of the site will see if they do have
the plug-in. This should include a brief list of site features, a screen shot, links to supplemental
pages, and, of course, a link to download the Silverlight plug-in itself. The following code shows an
updated version of the Silverlight object declaration that includes the required HTML code:

<object data=”data:application/x-silverlight-2,”
type=”application/x-silverlight-2” width=”100%” height=”100%”>
 <param name=”source” value=”ClientBin/FitnessTrackerPlus.xap”/>
 <param name=”minRuntimeVersion” value=” 4.0.41108.0” />
 <param name=”autoUpgrade” value=”true” />
 <div class=”silverlight_not_installed”>
 <div class=”banner”>
 <div class=”banner_left”>
 <asp:Image runat=”server” Height=”80px”
ImageUrl=”~/App_Themes/Main/Images/logo.png” />
 </div>
 <div class=”banner_right”></div>
 <div class=”clear”></div>
 </div>
 <div class=”features”>
 <div class=”features_left”>
 <asp:Image runat=”server”
ImageUrl=”~/App_Themes/Main/Images/screenshot.png” Width=”400px” Height=”300px” />
 </div>
 <div class=”features_right”>

 Keep track of the your foods and exercises daily
 Monitor common measurements
 Easily share your journal and results with others
 Now supporting MySpace

 <p>This site requires the use of Microsoft Silverlight
technology.
 Silverlight is a free and safe web plugin available from
Microsoft that
 assists in the creation of rich internet applications such as
FitnessTrackerPlus
 Installation is easy and takes only seconds. Just
click the Silverlight logo below to get started

 </p>

534045c03.indd 102 3/13/10 4:52:32 PM

Solution ❘ 103

 <asp:Image runat=”server”
ImageUrl=”~/App_Themes/Main/Images/silverlight_logo.png” />

 </div>
 <div class=”clear”></div>
 </div>
 <div class=”footer”>
 Home |
 Privacy Policy |
 Terms of Service |
 About
 </div>
 </div>
</object>

Code snippet FitnessTrackerPlus.aspx

If you want to test this and actually see what the home page looks like when Silverlight is not installed,
you do not need to actually uninstall the plug-in. In Internet Explorer 8, simply click Tools ➪ Manage
Add-ons, and disable the Silverlight plug-in and then refresh the page. Figure 3-1 shows the normal
Silverlight version of the home page while Figure 3-2 shows the home page that appears for users
that do not have the plug-in installed.

FigUre 3-1

534045c03.indd 103 3/13/10 4:52:32 PM

104 ❘ ChaPter 3 Sign Me Up

FigUre 3-2

Database, Data Access, Business Logic

Although the login control will be hosted here on the home page, I will leave the discussion of the
database tables related to login for later. The login control is a separate user control and will get its
own section in the chapter covering the required tables. Other than the login control, there is not
really any database solution to cover for the home page as no other database tables are required. The
same will hold true for the data access and business logic layers as there really aren’t any business
objects specific to this home page.

User Interface Code Behind

The code behind for the main page will need to handle a few things. First you need to take care of what
happens after a successful login. You will soon see that after a successful login, the Authentication ser-
vice provides only some basic profile properties but not the complete UserInformation instance. In this
event handler, you need to retrieve the UserInformation object for the currently logged-in user. The
following code shows the GetUserInformation method that will be called after the login is complete:

private void GetUserInformation()
{

534045c03.indd 104 3/13/10 4:52:32 PM

Solution ❘ 105

 // Retrieve the UserInformation class for the logged in user

 UserInformationContext userContext = new UserInformationContext();

 userContext.Load(userContext.GetUserQuery(WebContext.Current.User.Name),
 (GetUserCallback) =>
 {
 // Store the UserInformation in a global variable so the rest
 // of the application has access

 if (!GetUserCallback.HasError)
 {
 // Don’t navigate from the main page until our global
 // variables have been setup
 // every other page requires these to be set before
 // further processing

 MainSiteFrame.Navigate(new Uri(“Dashboard”,
UriKind.Relative));
 }

 }, null);
}

Code snippet MainPage.xaml.cs

Another problem that needs to be solved in the code behind of the main page is preventing non-
authenticated users from accessing the dashboard page. At this point, visitors who figure out the
direct URL to the dashboard page could potentially bypass the login process. Although there is cur-
rently no real content on this page, it doesn’t change the fact that you will need to prevent this from
happening sooner or later. In traditional ASP.NET websites, you were able to make use of the forms
authentication setup in the web.config file to prevent anonymous access to various pages. You would
usually have something similar to the following code in order to ensure that only authenticated users
were able to access a page:

<location path=”Dashboard.aspx”>
 <system.web>
 <authorization>
 <deny users=”?” />
 </authorization>
 </system.web>
</location>

Currently, Silverlight has no such mechanism in place so you must set up some code manually to
take care of this. By handling the Navigating event on the main site frame, you can trap requests
to the Dashboard page and quickly check the authentication status of the visitor before allowing the
navigation to proceed. In the following code, the Navigating event is handled and the requested
URI is checked to see if the visitor is attempting to access the Dashboard page. The WebContext
object determines if the visitor is authenticated and, if not, the Cancel property available in the

534045c03.indd 105 3/13/10 4:52:32 PM

106 ❘ ChaPter 3 Sign Me Up

NavigatingCancelEventArgs object is set to true. You can repeat this technique for any other
pages that you add to the project later, which should not be available to non-authenticated visitors.

private void MainSiteFrame_Navigating(object sender,
NavigatingCancelEventArgs e)
{
 // Protect the following pages from anonymous access

 if (e.Uri.OriginalString.Contains(“Dashboard”))
 {
 if (!WebContext.Current.User.IsAuthenticated)
 e.Cancel = true;
 else
 LoginControl.Visibility = Visibility.Collapsed;
 }
 else if (e.Uri.OriginalString.Contains(“Home”))
 {
 // When the user logs out of the site they will navigate back to
 // the landing page so enable the login control again

 LoginControl.Visibility = Visibility.Visible;
 }
}

Code snippet MainPage.xaml.cs

One last item that needs to be handled here in the code behind for the main page is the signup
complete event. Earlier, the design called for users that have completed the signup process to be
automatically logged in to the site. The Frame control offers another event called Navigated that is
fired once navigation to a page is completed. When a visitor reaches the signup page, this event is
fired and it provides an opportunity to hook up an event handler for the signup complete event. The
following code shows how the newly registered user is automatically logged in to the site by making
use of both events:

private void MainSiteFrame_Navigated(object sender, NavigationEventArgs e)
{
 if (e.Uri.OriginalString.Contains(“Signup”))
 {
 // If the visitor has navigated to the Signup page you need to hook
 // into the SignupComplete event so that the user can be logged
 // in automatically creating a new account. An instance of
 // the Signup page is available in the NavigationEventArgs so you
 // can easily hookup a listener for the event.

 FitnessTrackerPlus.Views.Signup signupPage = e.Content as
FitnessTrackerPlus.Views.Signup;

 signupPage.SignupComplete += (s, ev) =>
 {
 WebContext.Current.Authentication.Login(new
LoginParameters(ev.NewUser.email_address, ev.NewUser.password),
(LoginCompleteCallback) =>
 {

534045c03.indd 106 3/13/10 4:52:33 PM

Solution ❘ 107

 GetUserInformation();

 }, null);
 };
 }
}

Code snippet MainPage.xaml.cs

home View
When the landing page is first loaded, the main navigation frame is set to show the HomeView.xaml
page. This page’s only role is to display a screenshot of the application as well as a list of features
that the site has to offer. Other than that, there isn’t much to this control.

User Interface

The user interface for the home view is pretty simple, just a screenshot and a StackPanel of feature
bullets. At this point, the screenshot is just blank and you won’t be able to view a meaningful screen
until sometime after the next chapter when you’ve added a working nutrition log. In addition to the
feature list and screenshot, there is a large button that leads users to the registration page. Listing 3-3
shows the complete XAML code required for the home view page:

listing 3-3: Home.xaml

<navigation:Page x:Class=”FitnessTrackerPlus.HomePage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:navigation=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation”
 xmlns:toolkit=”clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Toolkit”
 Title=”FitnessTrackerPlus-Online Fitness Tracking Powered By Silverlight”>
 <navigation:Page.Resources>
 <Style x:Key=”FeatureTextStyle” TargetType=”TextBlock”>
 <Setter Property=”FontFamily” Value=”Trebuchet MS” />
 <Setter Property=”FontSize” Value=”16” />
 <Setter Property=”Margin” Value=”0,0,0,5” />
 <Setter Property=”TextAlignment” Value=”Right” />
 </Style>
 <Style x:Key=”SignupButtonStyle” TargetType=”Button”>
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Margin” Value=”0,20,0,0” />
 <Setter Property=”FontSize” Value=”20” />
 <Setter Property=”Padding” Value=”0” />
 <Setter Property=”Cursor” Value=”Hand” />
 </Style>
 <Style x:Key=”SignupButtonImageStyle” TargetType=”Image”>
 <Setter Property=”Source” Value=”/Images/signup.png” />
 <Setter Property=”Stretch” Value=”Fill” />

continues

534045c03.indd 107 3/13/10 4:52:33 PM

108 ❘ ChaPter 3 Sign Me Up

 <Setter Property=”Width” Value=”150” />
 <Setter Property=”Height” Value=”60” />
 </Style>
 <Style x:Key=”HomePanelStyle” TargetType=”toolkit:DockPanel”>
 <Setter Property=”LastChildFill” Value=”True” />
 </Style>
 <Style x:Key=”ScreenshotImageStyle” TargetType=”Image”>
 <Setter Property=”Source” Value=”/Images/screenshot.png” />
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Left” />
 <Setter Property=”Width” Value=”400” />
 <Setter Property=”Height” Value=”300” />
 <Setter Property=”Stretch” Value=”Fill” />
 <Setter Property=”VerticalAlignment” Value=”Top” />
 <Setter Property=”Margin” Value=”10,0” />
 </Style>
 <Style x:Key=”FeaturePanelStyle” TargetType=”StackPanel”>
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Right” />
 <Setter Property=”Margin” Value=”10,30,10,0” />
 </Style>
 </navigation:Page.Resources>
 <toolkit:DockPanel Style=”{StaticResource HomePanelStyle}”>
 <Image Style=”{StaticResource ScreenshotImageStyle}” />
 <StackPanel Style=”{StaticResource FeaturePanelStyle}”>
 <TextBlock Text=”• Keep track of your foods and
exercises daily” Style=”{StaticResource FeatureTextStyle}” />
 <TextBlock Text=”• Monitor common measurements”
Style=”{StaticResource FeatureTextStyle}” />
 <TextBlock Text=”• Easily share your journal and results with
others” Style=”{StaticResource FeatureTextStyle}” />
 <TextBlock Text=”• Now supporting MySpace”
Style=”{StaticResource FeatureTextStyle}” />
 <Button x:Name=”SignupButton” Style=”{StaticResource
SignupButtonStyle}”>
 <Button.Content>
 <Image Style=”{StaticResource
SignupButtonImageStyle}” />
 </Button.Content>
 </Button>
 </StackPanel>
 </toolkit:DockPanel>
</navigation:Page>

Database, Data Access, Business Logic

Like the home page, the home view control does not interact directly with any business objects or data-
base tables so there is no solution to discuss for the database, data access, and business logic layers.

User Interface Code Behind

The code behind is pretty simple for the home view; all you need is an event handler for the signup
button that navigates to the user registration page. Listing 3-4 shows the code behind for the home
view page:

listing 3-3 (continued)

534045c03.indd 108 3/13/10 4:52:33 PM

Solution ❘ 109

listing 3-4: Home.xaml.cs

using System;
using System.Windows.Controls;

namespace FitnessTrackerPlus
{
 public partial class HomePage: Page
 {
 public HomePage()
 {
 InitializeComponent();

 SignupButton.Click += (s, e) =>
 {
 this.NavigationService.Navigate(new
Uri(“Signup”, UriKind.Relative));
 };
 }
 }
}

Because you don’t have access to the main site frame from this control, you must use the
NavigationService instance to perform the navigation. All Page controls have access to this
service and all that happens is that navigation is delegated to the parent frame control. You could try
and get an instance of the parent frame and call its Navigate method instead, but the navigation
framework provides Page controls with easy access to this service and it is a much cleaner solution
than attempting to hold onto a reference or walk back up the visual control tree.

User registration
Well, now that you have a working home page and the ability to navigate to supplemental pages,
you need to add the capability to register new users. Just because you are developing a Silverlight
application does not mean that you have to lose out on the great functionality of the Membership,
Profile, Role, and Authentication services provided by ASP.NET. The new WCF RIA Services plat-
form provides tight integration for all of these services and even adds a powerful set of validation
settings that can dramatically reduce the amount of code required to create a fully functional user
registration system.

User Interface

In the previous chapter, I covered a new Silverlight control that makes it easier than ever to create
data entry forms called the DataForm. It should be no surprise that for the user registration page
the DataForm is utilized to automatically create the user interface for you. The DataForm requires
only that an empty object be set as its CurrentItem property and the control takes care of the rest.
Listing 3-5 shows the declaration of the DataForm along with some custom fields for the e-mail
address, password, and security information.

534045c03.indd 109 3/13/10 4:52:33 PM

110 ❘ ChaPter 3 Sign Me Up

listing 3-5: Signup.xaml

<navigation:Page x:Class=”FitnessTrackerPlus.Views.Signup”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:navigation=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation”
 xmlns:fitnesstrackerplus=”clr-namespace:FitnessTrackerPlus.Controls”
 xmlns:dataform=”clr-
namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Data.DataForm.Toolkit”
 Title=”FitnessTrackerPlus—Signup”>
 <navigation:Page.Resources>
 <Style x:Key=”SignupGridStyle” TargetType=”Grid”>
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 </Style>
 <Style x:Key=”UserRegistrationFormStyle” TargetType=”dataform:DataForm”>
 <Setter Property=”AutoGenerateFields” Value=”False” />
 <Setter Property=”AutoEdit” Value=”True” />
 <Setter Property=”CommandButtonsVisibility” Value=”None” />
 <Setter Property=”Header” Value=”Just fill out the
form below to get started with your own journal.” />
 </Style>
 <Style x:Key=”RegisterButtonStyle” TargetType=”Button”>
 <Setter Property=”Content” Value=”Create My Journal” />
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”VerticalAlignment” Value=”Top” />
 <Setter Property=”Margin” Value=”0,20,0,0” />
 </Style>
 </navigation:Page.Resources>
 <Grid Style=”{StaticResource SignupGridStyle}”>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <dataform:DataForm x:Name=”UserRegistration” Style=”{StaticResource
UserRegistrationFormStyle}” Grid.Row=”0”>
 <dataform:DataForm.EditTemplate>
 <DataTemplate>
 <StackPanel>
 <dataform:DataField>
 <TextBox Text=”{Binding email_address,
Mode=TwoWay}” />
 </dataform:DataField>
 <dataform:DataField>
 <fitnesstrackerplus:PasswordControl
PasswordText=”{Binding password, Mode=TwoWay}”/>
 </dataform:DataField>
 <dataform:DataField>
 <fitnesstrackerplus:PasswordControl
PasswordText=”{Binding confirm_password, Mode=TwoWay}”/>
 </dataform:DataField>
 <dataform:DataField>

534045c03.indd 110 3/13/10 4:52:33 PM

Solution ❘ 111

 <TextBox Text=”{Binding security_question,
Mode=TwoWay}” />
 </dataform:DataField>
 <dataform:DataField>
 <TextBox Text=”{Binding security_answer,
Mode=TwoWay}” />
 </dataform:DataField>
 </StackPanel>
 </DataTemplate>
 </dataform:DataForm.EditTemplate>
 </dataform:DataForm>
 <Button x:Name=”Register” Grid.Row=”1” Style=”{StaticResource
RegisterButtonStyle}” />
 </Grid>
</navigation:Page>

While looking at this code you should notice that instead of auto generating the form, I decided to
show you how to customize the appearance a little bit. By setting the AutoGenerateFields prop-
erty to False, you can override how each field will look using simple DataTemplates. Two-way
binding is used to ensure that the values entered in the various textboxes are automatically saved
back to the instance of the UserInformation object that the CurrentItem is currently set to. There
is another reason, however, for creating custom fields in this case, and it relates to the use of the
PasswordBox control. Because you will be collecting a password during user registration, you would
think that you could simply bind that field to a PasswordBox and everything would work just fine.
Unfortunately, you are not allowed to bind values to the Password property of a PasswordBox so
attempting to use the default Field generation won’t work for the FitnessTrackerPlus user registra-
tion scenario. Instead, a separate user control that contains a PasswordBox must be used to perform
the binding.

By utilizing the DataFormTemplateField, you can add just about any type of control to the
DataForm and that is exactly what you will do to solve the password binding issue. If you have
tried creating a project with the new WCF RIA Services business application template, this is what
the auto-generated code will do to solve the issue in its sample application. What you need to do is
add a new UserControl to the Silverlight project and call it PasswordControl. By adding a depen-
dency property of PasswordText, you can easily bind to that value in the DataForm using the pass-
word property of the UserInformation object. Listing 3-6 shows the XAML declaration for the
PasswordControl.

listing 3-6: PasswordControl.xaml

<UserControl x:Class=”FitnessTrackerPlus.Controls.PasswordControl”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml” >
 <Grid>
 <PasswordBox x:Name=”PasswordValue” />
 </Grid>
</UserControl>

534045c03.indd 111 3/13/10 4:52:33 PM

112 ❘ ChaPter 3 Sign Me Up

Ordinarily, I would hold off on any discussion of the code behind logic, but because the PasswordControl
is an integral part of the Signup page user interface, it will be discussed here. In the code behind,
you will create the dependency property and ensure that when the control loses focus the internal
PasswordBox has its Password property set. Because the DataForm has two-way binding set for the
PasswordControl when the LostFocus event is fired, the value of the PasswordText dependency
property will be stored back to the DataForm instance. Listing 3-7 shows the code behind logic
along with the LostFocus event handler.

listing 3-7: PasswordControl.xaml.cs

using System.Windows;
using System.Windows.Controls;

namespace FitnessTrackerPlus.Controls
{
 public partial class PasswordControl: UserControl
 {
 public static readonly DependencyProperty PasswordTextProperty =
 DependencyProperty.Register(“PasswordText”, typeof(string),
 typeof(PasswordControl), null);

 public PasswordControl()
 {
 InitializeComponent();

 this.LostFocus += (s, e) =>
 {
 this.PasswordText = PasswordValue.Password;
 };
 }

 public string PasswordText
 {
 get { return base.GetValue(PasswordTextProperty).ToString(); }
 set { base.SetValue(PasswordTextProperty, value); }
 }
 }
}

Database

When utilizing the ASP.NET Membership services, you have the option to utilize the default mem-
bership database rather easily. This default database solution provides you with all of the necessary
tables for the default providers to work correctly. You could use these as is, but many times you may
already have database tables designed to handle user registration that differ from what ASP.NET has to
offer. In the database design discussed earlier, you saw how FitnessTrackerPlus is using a completely
different set of database tables than what is available with the standard ASP.NET Membership
solution.

534045c03.indd 112 3/13/10 4:52:34 PM

Solution ❘ 113

I went in that direction for a variety of reasons, not the least of which was so that you could see how
to handle creating and using custom Role, Membership, and Profile providers rather easily with the
WCF RIA Services. The database solution includes the users, user_roles, profiles, and roles tables
as well as an additional table that provides various account types that you will be using later on when
you need to add premium features to the site. The tables were created by using the table design feature
of SQL Server Express Management Studio. Figure 3-3 shows the database diagram for the user reg-
istration tables.

FigUre 3-3

Data Access

The data access classes are relatively simple to create using LINQ to SQL:

 1. Add a new LINQ to SQL classes file to the project and name it Users.dbml.

 2. Drag the users, roles, user_roles, profiles, and account_types tables on to the design view.

 3. Build the ASP.NET project.

When you build the project, the LINQ to SQL runtime will generate data access classes or entities
to represent all the database table objects. The entity classes that are generated reside in the Users.
designer.cs file. I won’t list the auto-generated code here, but if you take a look at it you will see that
entities are generated for each table with properties for all of the columns. As a personal preference
and to not confuse the LINQ to SQL user entities that are generated with those from the built-in
ASP.NET Membership classes, I renamed the user entity to UserInformation. I find it easier to use
the entities if they adhere to the Pascal case-naming convention. As you will see, all the LINQ to
SQL classes generated in this book are renamed to reflect this. Figure 3-4 shows the LINQ to SQL
design view for the user registration tables.

534045c03.indd 113 3/13/10 4:52:34 PM

114 ❘ ChaPter 3 Sign Me Up

FigUre 3-4

Business Logic

The business logic for the user registration feature can be broken down into several areas:

 1. Create a new DomainService called UserInformationService that handles CRUD opera-
tions against the users table. This service must make use of the UserInformation entity class
that was generated by LINQ to SQL earlier.

 2. Create custom implementations of the Membership, Role, and Profile providers that both the
WCF RIA Services AuthenticationService class and the new UserInformationService
you are creating will use.

User Information Service

In the previous chapter you learned how the WCF RIA Services Framework provides a new class
called DomainService that exposes data to a Silverlight client as well as provides basic web service
operations. The first service you’ll create for FitnessTrackerPlus is the UserInformationService.
Typically, when creating DomainService classes, you will make use of some of the auto-generated
CRUD methods. For this UserInformationService, however, you need to do things a little differ-
ently. Because this service needs to interact directly with the ASP.NET custom Membership provider
it will look a little different than some of the other services you will create throughout the imple-
mentation of FitnessTrackerPlus. To get started:

 1. Create a new directory called Services in the ASP.NET project. This folder will contain all of
the WCF RIA Services created in the project.

534045c03.indd 114 3/13/10 4:52:34 PM

Solution ❘ 115

 2. Right-click that folder and add a new item to the project. Using the new Domain Service
Class item template you will create a new service called UserInformationService. Be sure
to select the UsersDataContext from the drop-down list, and check the “Generate associ-
ated classes for metadata” option, as shown in Figure 3-5.

FigUre 3-5

 3. Once the service is created, you’ll need to add two new methods:

The first method should be called ➤➤ CreateUser. Because this method does not follow the
naming scheme that WCF RIA Services uses, you need to add the [Invoke] attribute
just above the method declaration in order for it to be exposed to the Silverlight
client. This service method will have the exact same method signature as the CreateUser
method available in the ASP.NET MembershipProvider class. This method is essen-
tially a proxy method that calls into the custom MembershipProvider class you will be
creating. If any errors occur during the creation of the new user account, you will wrap
the error message in a DomainException that can be used by the Silverlight client to
report the error to the user.

The second method required will be used by the Silverlight client after a user has ➤➤

successfully logged in to the site. The method will be called GetUser and it will sim-
ply make use of the custom MembershipProvider class to return an instance of the
user’s corresponding UserInformation class. This instance will contain all the fields
available from the users table just in case they are needed by the client. Because this
method does follow the naming convention for WCF RIA Services, it is made avail-
able to the Silverlight client in the form of a Query operation.

534045c03.indd 115 3/13/10 4:52:34 PM

116 ❘ ChaPter 3 Sign Me Up

As you will see, the WCF RIA Services Authentication service does return a User object, but it does
not include any data from your custom users table. It will only return an object containing things
such as the username, and profile properties. Although these are useful, you may at some point
need access to other fields from the users table, which is why this additional GetUser operation is
created that returns all this additional information. Listing 3-8 shows the updated version of the
UserInformationService class complete with the CreateUser and GetUser methods.

Take note that because you’re implementing a custom MembershipProvider
class, you cannot simply use the static Membership.Provider instance
without first casting to the custom FitnessTrackerPlus.Web.Providers
.MembershipProvider class. If you fail to add this cast, your custom provider
method implementations will not be used and instead you will get the default
MembershipProvider behavior.

listing 3-8: UserInformationService.cs

using System.Web.Ria;
using System.Web.Security;
using System.Web.DomainServices;
using System.Web.DomainServices.Providers;
using FitnessTrackerPlus.Web.Data;

namespace FitnessTrackerPlus.Web.Services
{
 [EnableClientAccess()]
 public class UserInformationService : LinqToSqlDomainService<UsersDataContext>
 {
 private FitnessTrackerPlus.Web.Providers.MembershipProvider
provider = Membership.Provider as
FitnessTrackerPlus.Web.Providers.MembershipProvider;

 [Invoke]
 public void CreateUser(string username, string password, string
email, string passwordQuestion, string passwordAnswer)
 {
 MembershipCreateStatus status;
 UserInformation createdUser = provider.CreateUser(username,
password, email, passwordQuestion, passwordAnswer, true, null, out status) as
UserInformation;

 if (status != MembershipCreateStatus.Success)
 throw new DomainException(status.ToString());
 }

 public UserInformation GetUser(string email)
 {
 return provider.GetUser(email, true) as UserInformation;
 }
 }
}

534045c03.indd 116 3/13/10 4:52:34 PM

Solution ❘ 117

User Information Service Metadata

Perhaps one of the most powerful features of the new WCF RIA Services platform is the support for
client-side validation through the use of a metadata file. When you generate a new DomainService
class like the UserInformation class, you have the option to automatically generate associated
metadata. This optional metadata file allows you to specify attribute-based validation for any public
properties of the class. There are several attributes that can be used that allow you to specify various
validation aspects such as marking required properties, field lengths, and even regular expressions.
Table 3-8 shows all the possible validation attributes you can make use of.

table 3-8: WCF RIA Services Validation Attributes

ValiDation attribUte DesCriPtion

[Required] The field must have a value before saving changes to the

entity.

[RegularExpression()] Allows you to perform validation of specified property against

a regular expression.

[StringLength] Supports setting a minimum and maximum number of char‑

acters for a property value.

[DataType] Provides additional type information for property.

[Range] Allows you to specify a valid range value for the property.

[Custom] Provides a mechanism for specifying a custom validation

method for the property.

One of the most powerful ways to make use of this new feature is to combine it with the DataForm
control on the Silverlight client. When you use an entity that has its metadata validation rules speci-
fied, the DataForm will automatically perform validation against its CurrentItem object and display
any validation errors. Figure 3-6 shows the user registration DataForm with an invalid password
length supplied.

As far as adding metadata validation rules to the UserInformationService, you need to
ensure:

A valid e-mail address is used.➤➤

The password is at least six characters.➤➤

The security question and answer are less than 256 characters.➤➤

All these fields are required for signup.➤➤

534045c03.indd 117 3/13/10 4:52:35 PM

118 ❘ ChaPter 3 Sign Me Up

FigUre 3-6

Listing 3-9 shows the metadata validation rules for the UserInformationService.

listing 3-9: UserInformationService.metadata.cs

using System;
using System.ComponentModel.DataAnnotations;
using System.Web.Security;

#pragma warning disable 649 // disable compiler warnings about unassigned fields

namespace FitnessTrackerPlus.Web.Data
{
 [MetadataTypeAttribute(typeof(UserInformation.UserInformationMetadata))]
 public partial class UserInformation: MembershipUser
 {
 internal sealed class UserInformationMetadata
 {
 private UserInformationMetadata()
 {
 }

534045c03.indd 118 3/13/10 4:52:35 PM

Solution ❘ 119

 public int account_type;

 public DateTime created_date;

 public bool disabled;

 [Required]
 [Display(Name = “Email Address:”)]
 [RegularExpression(@”^([\w-\.]+)@((\[[0–9]{1,3}\.[0-
9]{1,3}\.[0–9]{1,3}\.)|(([\w-]+\.)+))([a-zA-Z]{2,4}|[0–9]{1,3})(\]?)$”,
ErrorMessage = “Invalid email address”)]
 public string email_address;

 public int id;

 [RegularExpression(@”\b\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}\b”,
ErrorMessage = “Invalid ip address”)]
 public string ip_address;

 public Nullable<DateTime> last_login_date;

 public bool locked;

 public Nullable<DateTime> locked_date;

 public bool online;

 [Required]
 [Display(Name = “Password:”)]
 [StringLength(256, MinimumLength = 6, ErrorMessage = “Password
must be at least 6 characters”)]
 public string password;

 [Required]
 [Display(Name = “Security Question:”)]
 [StringLength(256, ErrorMessage = “Security question may not
exceed 256 characters”)]
 public string security_question;

 [Required]
 [Display(Name = “Security Answer:”)]
 [StringLength(256, ErrorMessage = “Security answer may not
exceed 256 characters”)]
 public string security_answer;

 [StringLength(100)]
 public string username;
 }
 }
}

#pragma warning restore 649 // re-enable compiler warnings about
unassigned fields

534045c03.indd 119 3/13/10 4:52:35 PM

120 ❘ ChaPter 3 Sign Me Up

How does this work? After adding the desired validation attributes in the metadata file, the WCF RIA
Services framework ensures that these validation rules are automatically copied to the client-side ver-
sion of the objects. You may remember from the previous chapter that when you build a project with
WCF RIA Services support, the framework generates client-side versions of the server-side business
objects and they reside in a “.g.cs” file hidden in the Generated_Code folder in the Silverlight proj-
ect. If you take a closer examination of the FitnessTrackerPlus.Web.g.cs file that is generated in the
FitnessTrackerPlus Silverlight project, you’ll see that all the validation attributes you declared in the
metadata file have propagated to the client-side version of the objects as well. For example, in the
following code, the email_address property in the FitnessTrackerPlus.Web.g.cs file includes the
same [Required], [StringLength], and [RegularExpression] attributes that were declared in
the server-side version.

[DataMember()]
[Display(Name=”Email Address:”)]
[RegularExpression(“^([\\w-\\.]+)@((\\[[0–9]{1,3}\\.[0–9]{1,3}\\.[0–9]
{1,3}\\.)|(([\\w-]+\\.)+))([a-zA-Z]{2,4” +”}|[0–9]{1,3})(\\]?)$”,
ErrorMessage=”Invalid email address”)]
[Required()]
[StringLength(256)]
public string email_address
{
 get
 {
 return this._email_address;
 }
 set
 {
 if ((this._email_address != value))
 {
 this.ValidateProperty(“email_address”, value);
 this.Onemail_addressChanging(value);
 this.RaiseDataMemberChanging(“email_address”);
 this._email_address = value;
 this.RaiseDataMemberChanged(“email_address”);
 this.Onemail_addressChanged();
 }
 }
}

Code snippet FitnessTrackerPlus.Web.g.cs

Notice that in the set method of the email_address property, the ValidateProperty method is
called. This is what triggers the WCF RIA Services framework to check for any validation attributes
and report any violations of the rules.

One other element of which you need to be aware is the power of combining metadata with the
DataForm control. If you take a quick look again at the user registration form, which makes use of
the DataForm control, you’ll notice that only TextBox controls are being declared for the custom
DataField templates. Here is the declaration again.

534045c03.indd 120 3/13/10 4:52:35 PM

Solution ❘ 121

<dataform:DataForm x:Name=”UserRegistration” Style=”{StaticResource
UserRegistrationFormStyle}” Grid.Row=”0”>
 <dataform:DataForm.EditTemplate>
 <DataTemplate>
 <StackPanel>
 <dataform:DataField>
 <TextBox Text=”{Binding email_address, Mode=TwoWay}” />
 </dataform:DataField>
 <dataform:DataField>
 <fitnesstrackerplus:PasswordControl PasswordText=”{Binding
password, Mode=TwoWay}”/>
 </dataform:DataField>
 <dataform:DataField>
 <TextBox Text=”{Binding security_question,
Mode=TwoWay}” />
 </dataform:DataField>
 <dataform:DataField>
 <TextBox Text=”{Binding security_answer, Mode=TwoWay}” />
 </dataform:DataField>
 </StackPanel>
 </DataTemplate>
 </dataform:DataForm.EditTemplate>
</dataform:DataForm>

Code snippet Signup.xaml

Now, because the TextBox controls are bound to properties of an empty UserInformation object,
the DataForm not only checks the metadata for any validation attributes but also for a [Display]
attribute. This optional attribute will tell the DataForm control what text to place alongside the
TextBox control itself. This is why you end up with such a polished-looking data entry form, like the
one shown in Figure 3-7, without actually declaring any corresponding TextBlock or Label controls.
In this case, the Email Address, Password, Security Question, and Security Answer text is taken from
the [Display] attribute in the metadata file for each of those properties.

FigUre 3-7

As you make your way through the development of FitnessTrackerPlus, you’ll see that for almost
every entity being exposed by a DomainService, you’ll also add additional metadata validation
rules, and in some cases even custom validation methods.

534045c03.indd 121 3/13/10 4:52:35 PM

122 ❘ ChaPter 3 Sign Me Up

FitnessTrackerPlus MembershipProvider

To create the custom Membership provider, you first need to add a new class to the Providers
folder in the ASP.NET project and call it MembershipProvider. All ASP.NET custom Membership
providers must inherit from the System.Web.Security.MembershipProvider class. Your custom
class must override several abstract methods in this class. Although you have to declare these meth-
ods in your custom class, you can implement the methods that you don’t need by throwing a
NotImplementedException instead of an actual method declaration. Because you are in complete
control over how this custom provider is used, you can get away with only implementing a handful
of the required abstract methods that FitnessTrackerPlus specifically uses. These methods include
ValidateUser, GetUser, GetUserNameByEmail, CreateUser, and Initialize.

The MembershipProvider base class has several common user registration settings that serve as properties.
Some of these settings include things such as minimum password length, password retrieval capabilities,
unique e-mail requirements, password format, and more. Typically when you create a custom provider, you
override these properties and return the appropriate values for your specific application needs. The follow-
ing code shows the MembershipProvider properties that are overridden for FitnessTrackerPlus:

private int minRequiredPasswordLength = 6;
private string applicationName = “FitnessTrackerPlus”;

#region Public Properties

public override string ApplicationName
{
 get { return applicationName; }
 set { applicationName = value; }
}

public override int MaxInvalidPasswordAttempts
{
 get { throw new NotImplementedException(); }
}

public override int PasswordAttemptWindow
{
 get { throw new NotImplementedException(); }
}

public override int MinRequiredPasswordLength
{
 get { return minRequiredPasswordLength; }
}

public override bool RequiresQuestionAndAnswer
{
 get { return true; }
}

public override bool RequiresUniqueEmail
{
 get { return true; }
}

public override bool EnablePasswordReset

534045c03.indd 122 3/13/10 4:52:35 PM

Solution ❘ 123

{
 get { return true; }
}

public override bool EnablePasswordRetrieval
{
 get { return false; }
}

public override int MinRequiredNonAlphanumericCharacters
{
 get { return 0; }
}

public override MembershipPasswordFormat PasswordFormat
{
 get { return MembershipPasswordFormat.Hashed; }
}

public override string PasswordStrengthRegularExpression
{
 get { throw new NotImplementedException(); }
}

public override string Name
{
 get
 {
 return base.Name;
 }
}

#endregion

Code snippet MembershipProvider.cs

The values you return represent the default values that the ASP.NET Membership engine uses dur-
ing user registration. You can also override these values in the web.config file when you configure
ASP.NET to use your custom MembershipProvider class. The following code shows the web.config
declaration for the FitnessTrackerPlus custom MembershipProvider class along with an override for
the minRequiredPasswordLength property that forces the minimum password length to be eight
characters:

<membership defaultProvider=”FitnessTrackerPlusMembershipProvider”>
 <providers>
 <clear />
 <add name=”FitnessTrackerPlusMembershipProvider”
type=”FitnessTrackerPlus.Web.Providers.MembershipProvider”
minRequiredPasswordLength=”6” />
 </providers>
</membership>

Code snippet MembershipProvider.cs

534045c03.indd 123 3/13/10 4:52:35 PM

124 ❘ ChaPter 3 Sign Me Up

The minRequiredPasswordLength value specified in the web.config does not automatically propa-
gate to the custom provider. For your custom provider to get this value, you need to implement the
Initialize method. This method passes a NameValueCollection object that you can use to get
any override values that were set in web.config. In the following code, the NameValueCollection
object is checked for an instance of minRequiredPasswordLength. If it exists, then the value in the
web.config file overrides the internal variable:

public override void Initialize(string name,
System.Collections.Specialized.NameValueCollection config)
{
 if (config == null)
 throw new ArgumentNullException(“Provider configuration”);

 // Initialize base class

 base.Initialize(name, config);

 // Setup default values

 if (config[“minRequiredPasswordLength”] != null)
 {
 if (!String.IsNullOrEmpty(
config[“minRequiredPasswordLength”].ToString()))
 minRequiredPasswordLength =
Convert.ToInt32(config[“minRequiredPasswordLength”]);
 }
}

Code snippet MembershipProvider.cs

The next method that you need to implement in this custom provider is the CreateUser method. In
this method, you must do a few things required by the design. One of the main reasons you are creat-
ing a custom MembershipProvider class is that you did not want to force users to come up with a
unique username. Instead, you wanted to make use of the e-mail address as the primary login key.
The default MembershipProvider implementation requires the use of a username property for the
majority of its methods. By creating the custom provider, you can change these to use the e-mail
address instead. You still, however, need a username when you get to the public fitness journal feature
as you want the unique URL to be in a format that makes use of a username rather than a complete
e-mail address. This being the case, you need to use the algorithm created earlier in the design to
ensure that a unique username is also created for each user during signup. This involves combining
the first part of the e-mail address with the unique identity field that is available after the record
is created in the database. In the following code, you’ll see that the UserInformationService is
utilized to create a new entry in the database for the user. After the user is created, the ID field is
then valid and is used to generate a valid username. Next, the user is added to the basic “user” role,
which comes into play later on in the book. Finally, a default theme is added to the user’s profile:

public override MembershipUser CreateUser(string username, string password,
string email, string passwordQuestion, string passwordAnswer, bool isApproved,
object providerUserKey, out MembershipCreateStatus status)
{

534045c03.indd 124 3/13/10 4:52:36 PM

Solution ❘ 125

 try
 {
 // Check for valid email address

 if (String.IsNullOrEmpty(email))
 throw new MembershipException(MembershipCreateStatus.InvalidEmail);

 // Check to see if this email address already exists

 if (!String.IsNullOrEmpty(GetUserNameByEmail(email)))
 throw new MembershipException(MembershipCreateStatus.
DuplicateEmail);

 // Check to see if this user already exists

 if (GetUser(email, false) != null)
 throw new MembershipException(MembershipCreateStatus.
DuplicateUserName);

 // Check password length

 if (String.IsNullOrEmpty(password) || password.Length <
minRequiredPasswordLength)
 throw new MembershipException(MembershipCreateStatus.
InvalidPassword);

 // Check security question and answer

 if (String.IsNullOrEmpty(passwordQuestion))
 throw new MembershipException(MembershipCreateStatus.
InvalidQuestion);

 if (String.IsNullOrEmpty(passwordAnswer))
 throw new MembershipException(MembershipCreateStatus.InvalidAnswer);

 // At this point all validation checks have passed so create a
 // new user object
 // and ensure that the password is encrypted using one-way SHA1
 // encryption

 UserInformation newUser = new UserInformation
 {
 email_address = email,
 password =
FormsAuthentication.HashPasswordForStoringInConfigFile(password, “SHA1”),
 locked = false,
 created_date = DateTime.Now,
 account_type = (int)AccountTypes.BASIC,
 security_question = passwordQuestion,
 security_answer =
FormsAuthentication.HashPasswordForStoringInConfigFile(passwordAnswer, “SHA1”)
 };

 context.UserInformations.InsertOnSubmit(newUser);

534045c03.indd 125 3/13/10 4:52:36 PM

126 ❘ ChaPter 3 Sign Me Up

 context.SubmitChanges();

 // Update the username to reflect the first part of email address and
 // current id
 // This username is only going to be used in the forums and to create a
 // friendly url to a public journal

 newUser.username = String.Format(“{0}{1}”,
newUser.email_address.Substring(0, newUser.email_address.IndexOf(“@”)),
newUser.id.ToString());

 context.SubmitChanges();

 // Before leaving we still need to add the user to the site user role

 Roles.AddUserToRole(newUser.email_address, “user”);

 // Finally create a profile entry for the new user with a default
 // theme selection

 newUser.Profiles.Add(new Profile { current_theme = “ShinyBlue”,
user_id = newUser.id });
 context.SubmitChanges();

 status = MembershipCreateStatus.Success;
 return newUser;
 }
 catch (MembershipException ex)
 {
 status = ex.status;
 }
 catch (Exception)
 {
 status = MembershipCreateStatus.ProviderError;
 }

 return null;
}

Code snippet MembershipProvider.cs

One other thing to notice in the previous code is the use of the HashPasswordForStoringInConfigFile
method. This utility function, available in the FormsAuthentication class, provides an easy way to
generate the SHA1 one-way encrypted password that the design calls for.

Once you provide the capability to create new users in the MembershipProvider, you then need to
override the ValidateUser method to ensure that the login works correctly with the e-mail address
as opposed to the username. In the following code, a LINQ query validates the e-mail address being
passed in along with the password. Once again, the HashPasswordForStoringInConfigFile helper
method compares the plain-text password being passed in with the hashed password that is actually
stored in the database.

534045c03.indd 126 3/13/10 4:52:36 PM

Solution ❘ 127

public override bool ValidateUser(string username, string password)
{
 try
 {
 UserInformation currentUser = context.UserInformations.Where(e =>
e.email_address == username &&
e.password == FormsAuthentication.HashPasswordForStoringInConfigFile(password,
“SHA1”) && e.disabled == false).SingleOrDefault();

 if (currentUser != null)
 return true;
 }
 catch (Exception)
 {
 }

 return false;
}

Code snippet MembershipProvider.cs

One nice thing about making use of the WCF RIA Services AuthenticationService is that it inter-
nally calls your custom implementation of ValidateUser when authenticating users. It does this with
no additional work on your part other than letting the ASP.NET engine know about your custom
provider in the web.config Membership section.

FitnessTrackerPlus RoleProvider

FitnessTrackerPlus will have two roles available to start with: admin and user. Every user that visits
the user registration page will be added to the user role. Later on, you may decide to add some kind
of administrator page that helps you to manage existing users. In that case, you want to restrict access
to such a page as well as any services to the admin role only. The included FitnessTrackerPlus database
already has one admin account created and all the default foods, exercises, and measurements are linked
to this account. As was the case with the custom Membership provider, the FitnessTrackerPlus
RoleProvider class must inherit from a base class in the System.Web.Security namespace. In this
case, it is called, incredibly enough, RoleProvider.

Just as you did with the MembershipProvider, you need to configure the ASP.NET runtime to make
use of your custom role provider by updating the web.config file and pointing it to your custom
RoleProvider class. The following code shows the necessary additions to the web.config file that
point the ASP.NET runtime to the FitnessTrackerPlus.Web.Providers.RoleProvider class:

<roleManager enabled=”true” defaultProvider=”FitnessTrackerPlusRoleProvider”>
 <providers>
 <clear />
 <add name=”FitnessTrackerPlusRoleProvider”
type=”FitnessTrackerPlus.Web.Providers.RoleProvider” />
 </providers>
</roleManager>

Code snippet web.config

534045c03.indd 127 3/13/10 4:52:36 PM

128 ❘ ChaPter 3 Sign Me Up

There are several methods and properties that need to be implemented in the custom provider.
However, you really want to concentrate on two important methods: GetRolesForUser and
AddUsersToRoles. The first method is called when the AuthenticationService performs a valid
login and requests any roles that the user belongs to. In the following code, you see that first the
UserInformation instance is retrieved for the user. Next, the UsersRoles association is loaded in
the UserInformation instance. Once loaded, any roles that the user has been assigned to will be
available in the UsersRoles property of the UserInformation object.

public override string[] GetRolesForUser(string username)
{
 List<string> roles = new List<string>();

 try
 {
 UserInformation user = context.UserInformations.Where(e =>
e.email_address == username).SingleOrDefault<UserInformation>();

 if (user != null)
 {
 // The only way to find out what roles have been assigned
 // to the user is to load the UsersRoles association

 user.UsersRoles.Load();

 // Once populated any roles that the user has been assigned
 // to should be available in the UsersRoles property

 foreach (UsersRoles role in user.UsersRoles)
 roles.Add(role.Role.name);
 }
 }
 catch (Exception)
 {
 }

 return roles.ToArray();
}

Code snippet RoleProvider.cs

You may remember the AddUsersToRoles method from the CreateUser implementation in the
MembershipProvider. If not, all you need to know is that after a new user is created, he or she is
added to the “user” role by means of this method. The following code shows how the implementa-
tion of this method makes use of the UserInformationService in order to insert a new record into
the users_roles table. This provides the database link between users and roles.

public override void AddUsersToRoles(string[] usernames, string[] roleNames)
{
 try
 {
 UserInformation userInformation = null;

534045c03.indd 128 3/13/10 4:52:36 PM

Solution ❘ 129

 Role role = null;

 foreach (string username in usernames)
 {
 userInformation = context.UserInformations.Where(e =>
e.email_address == username).SingleOrDefault<UserInformation>();

 if (userInformation != null)
 {
 foreach (string roleName in roleNames)
 {
 role = context.Roles.Where(e => e.name ==
roleName).SingleOrDefault<Role>();

 if (role != null)
 context.UsersRoles.InsertOnSubmit(new UsersRoles {
user_id = userInformation.id, role_id = role.id });
 }
 }
 }

 context.SubmitChanges();
 }
 catch (Exception)
 {
 }
}

Code snippet RoleProvider.cs

FitnessTrackerPlus ProfileProvider

The final custom provider that you need to implement is the ProfileProvider. The standard imple-
mentation of the ASP.NET Profile provider makes use of an XML-based string and adds property
values to that string before storing it in the profile table. You will be using a slightly different approach
here and instead make use of the profiles table that includes a column for each custom profile prop-
erty. Each row in the table ties a specific user to all of the property columns. Once again, you need to
let the ASP.NET runtime know about your custom ProfileProvider class before it will make use of
it. The ProfileProvider section that is added to the web.config file must also list any of the custom
profile properties that will be made available by the runtime. The runtime uses this list to create a
collection of SettingsProperty objects that you must make use of in your custom provider shortly.
The following code shows the updated web.config section related to the custom ProfileProvider.

So far, you have only one custom profile property, but as you progress through
the application, you need to come back to this section of the web.config and
make sure it is updated to reflect any new columns in the profiles table.

534045c03.indd 129 3/13/10 4:52:36 PM

130 ❘ ChaPter 3 Sign Me Up

<profile enabled=”true” automaticSaveEnabled=”false”
defaultProvider=”FitnessTrackerPlusProfileProvider”>
 <providers>
 <clear />
 <add name=”FitnessTrackerPlusProfileProvider”
type=”FitnessTrackerPlus.Web.Providers.ProfileProvider” />
 </providers>
 <properties>
 <add name=”CurrentTheme” type=”String”
customProviderData=”current_theme;varchar;100” />
 </properties>
</profile>

Code snippet web.config

FitnessTrackerPlus won’t be supporting the concept of inactive profiles, so methods related to those
operations won’t have any implementation in your custom provider. There are really only a handful
of methods that need to be implemented to get the custom Profile provider working, so let’s look at
the code required.

The first method that you need to implement in the custom provider is the GetProfile method.
This is called by the WCF RIA Services AuthenticationService to retrieve the profile object for
the currently logged-in user. You won’t need to worry about calling this method in your own code
because it occurs behind the scenes as part of that WCF RIA Services integration with the ASP.NET
Profile Service I spoke about earlier. Like most of the MembershipProvider methods, this one relies
on a username being passed, which in your case is actually an e-mail address. You will once again
make use of a LINQ query to retrieve the correct profile, but because the profile is associated with
the user by means of an identity column, you must add a subquery in the LINQ statement that first
grabs the correct ID for the user and then grabs the correct profile object. The following code shows
the GetProfile method implementation:

private Profile GetProfile(string username)
{
 try
 {
 Profile profile = (from p in dataContext.Profiles
 where p.user_id == (from u in
dataContext.UserInformations
 where u.email_address == username
 select u.id).SingleOrDefault<int>()
 select p).SingleOrDefault();

 return profile;
 }
 catch(Exception)
 {
 }

 return null;
}

Code snippet ProfileProvider.cs

534045c03.indd 130 3/13/10 4:52:36 PM

Solution ❘ 131

Next, you must implement both the GetPropertyValues and SetPropertyValues methods. For the
GetPropertyValues method, you are passed a SettingsPropertyCollection object that contains a set
of SettingsProperty objects for each of the custom profile properties that has been specified in the web.
config file. You need to create a corresponding SettingsPropertyValue object with the PropertyValue
property set to the appropriate value and add it to a SettingsPropertyValueCollection object that
is returned when the method is complete. So far, you have only one custom profile property called
CurrentTheme so the code is relatively simple. Later on, as you add columns to the profiles table, the
foreach loop in the following code will grow to include those additional profile properties.

public override SettingsPropertyValueCollection GetPropertyValues(SettingsContext
context, SettingsPropertyCollection collection)
{
 SettingsPropertyValueCollection valueCollection = new
SettingsPropertyValueCollection();

 try
 {
 Profile profile = GetProfile(context[“UserName”] as string);

 // If a profile was found then loop through all profile properties
 // and assign appropriate values

 if (profile != null)
 {
 foreach (SettingsProperty property in collection)
 {
 SettingsPropertyValue propertyValue = new
SettingsPropertyValue(property);

 switch (property.Name)
 {
 case “CurrentTheme”:
 {
 propertyValue.PropertyValue = profile.current_theme;
 break;
 }
 }

 valueCollection.Add(propertyValue);
 }
 }
 }
 catch (Exception)
 {
 }

 return valueCollection;
}

Code snippet ProfileProvider.cs

The next method that needs an implementation is the SetPropertyValues method. As you may
have guessed, this method works similarly to the GetPropertyValues but in reverse — you are being

534045c03.indd 131 3/13/10 4:52:37 PM

132 ❘ ChaPter 3 Sign Me Up

passed in a collection of SettingsPropertyValue objects, and you need to update the internal private
variables to reflect the changes made in these profile properties. As you will see, the WCF RIA Services
AuthenticationService provides built-in methods for updating and saving changes to the user’s pro-
file. Behind the scenes, the AuthenticationService calls into your custom ProfileProvider class
and makes use of the SetPropertyValues method in order to do this. The following code shows the
implementation for the SetPropertyValues method:

public override void SetPropertyValues(SettingsContext context,
SettingsPropertyValueCollection collection)
{
 SettingsPropertyValueCollection valueCollection = new
SettingsPropertyValueCollection();

 // Extract the username to retrieve property values for

 string userName = context[“UserName”] as string;

 // Get the profile for current user

 FitnessTrackerPlus.Web.Data.Profile dataProfile =
 (from p in dataContext.Profiles
 where p.user_id == (from u in
 dataContext.UserInformations
 where u.email_address == userName
 select u.id).SingleOrDefault<int>()
 select p).SingleOrDefault();

 // If a profile was found then loop through all profile properties and
 // assign appropriate values

 if (dataProfile != null)
 {
 foreach (SettingsPropertyValue propertyValue in collection)
 {
 switch (propertyValue.Name)
 {
 case “CurrentTheme”:
 {
 dataProfile.current_theme =
propertyValue.PropertyValue.ToString();
 break;
 }
 }
 }

 dataContext.SubmitChanges();
 }
}

Code snippet ProfileProvider.cs

534045c03.indd 132 3/13/10 4:52:37 PM

Solution ❘ 133

User Interface Code Behind

There are a few things that you need to achieve in the user registration code behind. First, you want
to initialize the DataForm when the page is loaded with an empty UserInformation object as well
as set up a Click handler for the Register button. In the following code, the Loaded event of the
Signup page is used for these two tasks.

Loaded += (s, e) =>
{
 // DataForm requires an empty instance of the UserInformation object
 // in order to present the required data entry fields

 UserRegistration.CurrentItem = newUser;
 Register.Click += new RoutedEventHandler(Register_Click);
};

Code snippet Signup.xaml.cs

Next, when the Register button is clicked, you need to validate the information entered on the screen
and create the new user in the database by using the UserInformation service created earlier. Because
the private newUser variable was associated with the DataForm and two-way binding was enabled,
in the following code, the variable contains all the updated values that were entered on the form.
These values are passed into the CreateUser method of the UserInformationService which, of
course, internally makes use of the custom MembershipProvider you created to actually store the
information in the database.

private void Register_Click(object sender, RoutedEventArgs e)
{
 // Use the UserInformation service to create a new user
 // Behind the scenes the custom MembershipProvider’s CreateUser method
 // will be called by the service

 if (UserRegistration.ValidateItem() && UserRegistration.CommitEdit())
 {
 context.CreateUser(newUser.email_address, newUser.password,
newUser.email_address, newUser.security_question,
newUser.security_answer, CreateUserCallback, newUser);
 }
}

Code snippet Signup.xaml.cs

Finally, if the signup process was successful, you want to fire the custom SignupComplete event that
the main page uses to automatically log the user into the site and present them with the Dashboard
page. This is all handled in the CreateUserCallback method, as shown in the following code.

private void CreateUserCallback(InvokeOperation result)
{
 if (!result.HasError)
 {
 // After successfully creating a new account you want the user to
 // automatically be logged in and redirected to the Dashboard.

534045c03.indd 133 3/13/10 4:52:37 PM

134 ❘ ChaPter 3 Sign Me Up

 // By firing this custom SignupComplete event the parent control
 // can perform the login operation when the account has been
 // created.

 if (SignupComplete != null)
 SignupComplete(this, new SignupEventArgs(result.UserState
as UserInformation));
 }
 else
 result.MarkErrorAsHandled();
}

Code snippet Signup.xaml.cs

When using WCF RIA Services, if an error occurs an Exception will be thrown
unless you specifically call the MarkErrorAsHandled method.

login Control
Silverlight does not currently provide an implementation of a login control as there is in ASP.NET.
It is not, however, terribly difficult to create one. The login control will need to make use of the
existing ASP.NET Authentication service, which is accessible from the WCF RIA Services. As you will
see, it is simple to add support for the Authentication services in Silverlight when using the WCF RIA
Services. The login process even automatically makes use of your custom Membership provider
behind the scenes.

User Interface

As the “Design” section stated, this login control needs to include a textbox for the e-mail address
and a PasswordBox for the password entered by the user. As you may have noticed by now, I prefer
to keep style information out of the individual control declarations so the styles are all defined in the
UserControl.Resources section of the XAML file. All user interface controls in FitnessTrackerPlus
are implemented that way as it makes applying themes to these controls later on much easier.
Listing 3-10 shows the XAML required for the Login control.

listing 3-10: Login.xaml

<UserControl x:Class=”FitnessTrackerPlus.Controls.Login”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>
 <UserControl.Resources>
 <Style x:Key=”LoginBoxGridStyle” TargetType=”Grid”>
 <Setter Property=”VerticalAlignment” Value=”Top” />
 </Style>
 <Style x:Key=”LoginTextBoxStyle” TargetType=”TextBox”>
 <Setter Property=”Width” Value=”200” />

534045c03.indd 134 3/13/10 4:52:37 PM

Solution ❘ 135

 <Setter Property=”Margin” Value=”10,0,0,0”/>
 </Style>
 <Style x:Key=”LoginPasswordBoxStyle” TargetType=”PasswordBox”>
 <Setter Property=”Width” Value=”200” />
 <Setter Property=”Margin” Value=”10,0,0,0”/>
 </Style>
 <Style x:Key=”LoginErrorStyle” TargetType=”TextBlock”>
 <Setter Property=”Foreground” Value=”#FFFF0000” />
 <Setter Property=”Margin” Value=”0,5,0,0” />
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 </Style>
 <Style x:Key=”LoginButtonStyle” TargetType=”Button”>
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”Content” Value=”Login” />
 </Style>
 </UserControl.Resources>
 <Border>
 <Grid Style=”{StaticResource LoginBoxGridStyle}”>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <TextBlock Text=”Email Address:” Grid.Row=”0”
Grid.Column=”0” />
 <TextBox x:Name=”EmailAddress” Grid.Row=”0”
Grid.Column=”1” Style=”{StaticResource LoginTextBoxStyle}” />
 <TextBlock Text=”Password:” Grid.Row=”1” Grid.Column=”0” />
 <PasswordBox x:Name=”Password” Grid.Row=”1” Grid.Column=”1”
Style=”{StaticResource LoginPasswordBoxStyle}” />
 <Button x:Name=”LoginUser” Style=”{StaticResource
LoginButtonStyle}” Grid.Column=”1” Grid.Row=”2” />
 <TextBlock x:Name=”LoginError” Style=”{StaticResource
LoginErrorStyle}” Grid.Column=”0” Grid.ColumnSpan=”2” Grid.Row=”3” />
 </Grid>
 </Border>
</UserControl>

Database, Data Access

The login control will be utilizing the same database tables and LINQ to SQL classes that were
created for user registration so there won’t be any additional work to do in this area of the solution.

Business Logic

Enabling support for ASP.NET Authentication using the WCF RIA Services requires only that you add
another DomainService class to your project. This service should be called AuthenticationService
and instead of inheriting from the DomainService base class it will need to inherit from the new

534045c03.indd 135 3/13/10 4:52:38 PM

136 ❘ ChaPter 3 Sign Me Up

AuthenticationBase class. By default, the AuthenticationService is set up to use the UserBase
type, which provides access to standard System.Security.Principal properties that are associ-
ated with the login operation. You can easily extend this base class to include any custom properties
from the profile table that you also want to be available after successful login. Listing 3-11 shows
the AuthenticationService implementation. There really isn’t much to it other than ensuring that
your CurrentTheme profile property is being exposed in the User object. This is really all that you
need for the Silverlight client to have access to user Authentication services on the server.

listing 3-11: AuthenticationService.cs

using System.Web.Ria;
using System.Web.Ria.ApplicationServices;

namespace FitnessTrackerPlus.Web
{
 [EnableClientAccess]
 public class AuthenticationService: AuthenticationBase<User>
 {
 }

 public class User: UserBase
 {
 // Profile properties that should be exposed as part of the
 // User object

 public string CurrentTheme { get; set; }
 }
}

One very important thing to watch out for here is not to confuse the User or UserBase class with
the UserInformation LINQ to SQL class created earlier. These are two completely different objects
and the User object returned after login will not have access to any of the UserInformation
properties. At first, this may seem confusing but you have to remember that the logged-in User
class is a representation of the System.Security.Principal object which is not the same as
your custom UserInformation entity. In theory, you could add all of the UserInformation
properties to the User class and override the validation method of the AuthenticationBase
class, call into your Membership provider and copy all of the UserInformation properties into
new User class properties, but in this case it would be more work than it is worth. You already
have the UserInformationService available if you need to expose methods to retrieve specific
UserInformation details and you might as well make use of it instead.

User Interface Code Behind

There is one more required step to perform before you can make use of the
AuthenticationService that you created on the Silverlight client. Standard DomainService classes
will be taken care of by the code generation algorithms of the WCF RIA Services platform. For the
UserInformation class, this results in a UserInformationContext class being generated. In order

534045c03.indd 136 3/13/10 4:52:38 PM

Solution ❘ 137

to access the AuthenticationService in the Silverlight client, however, you need to add the service
as an application-level resource. You can do this by just adding the following XAML to the App.
xaml file in the project:

<Application.ApplicationLifetimeObjects>
 <app:WebContext>
 <app:WebContext.Authentication>
 <services:FormsAuthentication />
 </app:WebContext.Authentication>
 </app:WebContext>
</Application.ApplicationLifetimeObjects>

Code snippet App.xaml

Once you’ve added the previous code to the App.xaml file, you’ll be able to access the service
through the WebContext.Current.Authentication object.

Getting back to the code behind for the Login control, you will first need to handle the Login but-
ton Click event and make use of the AuthenticationService you have just created to validate
the e-mail address and password that was supplied. In the following code, the Login method of the
WebContext.Current.Authentication object is called and a callback method set up for checking
to see if the login was a success.

LoginUser.Click += (se, ev) =>
{
 // Use the RIA Authentication service to login the user
 // Behind the scenes the custom MembershipProvider’s ValidateUser
 // method will be called to perform the actual login.

 WebContext.Current.Authentication.Login(new LoginParameters(EmailAddress.Text,
Password.Password), LoginCompleteCallback, null);

};

Code snippet Login.xaml.cs

For the callback method, you need to check the LoginSuccess property of the LoginOperation
object, and if there are no errors the Login control will fire a LoginComplete event. Remember, the
main page is listening for this event and, when it is fired, will be responsible for navigating to the
Dashboard page, which is now available because the user has been authenticated. Now if a failure
occurs during the Login operation, you need to let the user know by updating the TextBlock on
the control with an appropriate error message. Here is the code for the LoginCompleteCallback
method where this all takes place:

private void LoginCompleteCallback(LoginOperation result)
{
 if (!result.HasError)
 {
 if (result.LoginSuccess)
 {
 // Let the parent control know that the login was successful

534045c03.indd 137 3/13/10 4:52:38 PM

138 ❘ ChaPter 3 Sign Me Up

 if (LoginComplete != null)
 LoginComplete(this, null);

 // Clearing the error text here prevents the login failed
 // message from being displayed again if the user did fail
 // a login attempt and then eventually succeeded.

 // Without doing this after the user logs out the previous
 // error message would still be visible on the home page

 LoginError.Text = “”;
 }
 else
 LoginError.Text = “Login Failed: Please check your email
address and password.”;
 }
 else
 {
 LoginError.Text = “Login Failed: Please check your email address
and password.”;
 result.MarkErrorAsHandled();
 }
}

Code snippet Login.xaml.cs

Running the application at this point will provide you with a working login control and user regis-
tration page. This thing is starting to feel a little bit more like a real site now. There is, however, still
the issue of what the user sees after a successful login.

Dashboard
The dashboard is the page that the user will interact with upon a successful login to the site. You
will see the full design and implementation of this page in the next chapter, but for now you still will
need to create it so that you have somewhere to navigate to after a successful login.

User Interface, Database, Data Access, Business Logic

You will be creating the entire user interface for the dashboard in the next chapter so I won’t be cov-
ering any database, data access, or business logic here. All you need to do for now is ensure that the
page exists in the Views folder by adding a new Silverlight navigation page to the Views folder and
calling it Dashboard.xaml. The only item currently in the user interface is a single button that per-
forms logout functionality and sends the user back to the main home page.

User Interface Code Behind

Not much is in the code behind right now for the dashboard other than an event handler for
the logout button. In this event handler, you call the Logout method of the WCFContext.Current
.Authentication object. Upon completion of this method, navigate back to the main home page.
Listing 3-12 shows the current logic behind the dashboard page.

534045c03.indd 138 3/13/10 4:52:38 PM

Solution ❘ 139

listing 3-12: Dashboard.xaml.cs

using System;
using System.Windows.Controls;

namespace FitnessTrackerPlus.Views
{
 public partial class Dashboard: Page
 {
 public Dashboard()
 {
 InitializeComponent();

 Logout.Click += (s, e) =>
 {
 // Use the RIA Authentication service to logout and when
 // complete redirect the user back to the main home page

 WebContext.Current.Authentication.LoggedOut += (se, ev) =>
 {
 NavigationService.Navigate(new Uri(“Home”,
UriKind.Relative));
 };

 WebContext.Current.Authentication.Logout(false);
 };
 }
 }
}

Throughout this book you will notice that a majority of the control event han‑
dlers utilize the new lambda expression syntax from .NET. This is strictly a
personal preference that I have when coding event handlers that need to interact
with web services in Silverlight. All web service calls in Silverlight are asynchro‑
nous and require handling some type of completed event. I prefer to keep the
calling of the service as well as the completed logic in one control event handler
because it consolidates the overall logic of what I am trying to do. You do not
have to follow this syntax and creating separate event handlers for completed
events is perfectly acceptable. My rule of thumb is that as long as the event han‑
dler does not require too many additional levels of nested asynchronous calls I
will use lambda expressions to handle it.

supplemental Pages
I won’t be covering the supplemental pages in detail just yet; however, before deploying the site,
you’ll come back to them and make them functional. For now, you should at least create placeholder
controls for each of them so that you have some working links on the main home page. To do this,
just create new Page controls in the Views folder called Privacy, About, Contact, and Terms.

534045c03.indd 139 3/13/10 4:52:39 PM

140 ❘ ChaPter 3 Sign Me Up

Uri mapping
There is one last topic to discuss before moving on to additional site functionality, and that is the new
URI mapping feature of Silverlight. In the previous chapter I showed you how easy it was to utilize this
feature for deep linking or just to hide the full path to the XAML files from the user. You have created
several new pages in the application at this point and you may have noticed that the Navigate calls
never needed to include full paths to XAML files. This was made possible by setting up URI mapping
in the App.xaml file. The following code shows the UriMapper along with the UriMapping entries
that are required at this point in the development.

<Application.Resources>
 <uri:UriMapper x:Key=”UriMap”>
 <uri:UriMapping Uri=”Home” MappedUri=”/Views/Home.xaml” />
 <uri:UriMapping Uri=”About” MappedUri=”/Views/About.xaml” />
 <uri:UriMapping Uri=”Contact” MappedUri=”/Views/Contact.xaml” />
 <uri:UriMapping Uri=”Privacy” MappedUri=”/Views/Privacy.xaml” />
 <uri:UriMapping Uri=”Signup” MappedUri=”/Views/Signup.xaml” />
 <uri:UriMapping Uri=”Terms” MappedUri=”/Views/Terms.xaml” />
 <uri:UriMapping Uri=”Dashboard” MappedUri=”/Views/Dashboard.xaml” />
 </uri:UriMapper>
</Application.Resources>

Code snippet App.xaml

That’s all there is to it — nothing in the code behind, no other configuration parameters. It requires
a very minimal amount of XAML code to get this working, and when I cover the public journal
feature you will see that you can even get this feature working with query string parameters just as
easily.

sUmmary

There is a lot of information to digest in this chapter and you have been introduced to many new
technologies such as accessing the ASP.NET Membership, Profile, Role, and Authentication services
in your Silverlight client. You have seen how easy it is to expose this functionality by utilizing the
new WCF RIA Services platform. You should also now be familiar with how easy it is to provide
client-side validation and data entry forms using the new DataForm control and metadata attribute
declarations. Finally, I discussed how easy it is to use the new URI mapping feature of Silverlight to
hide the full path to your XAML navigation pages from the user.

At this point, you basically have a working site complete with authentication and user registration
capabilities. Although these are great services and are required for any major website, they don’t
satisfy any real business requirements or provide any added value to the user. Now the fun begins
as you create the nutrition log page and make the dashboard do something other than just provide
users with the ability to log out of the site. By the end of the next chapter, you will be able to provide
a working nutrition log where users can enter the foods they eat daily.

534045c03.indd 140 3/13/10 4:52:39 PM

Welcome Home
Creating the User’s Personal Home Page

Now that you have the ability to register users, it’s time to give them a solid landing page for
when they log into the site. The last chapter basically left off with a blank page and a logout
button just so that you could see how the login/logout functionality worked with the authen-
tication service. Now it’s time to put something useful on this page. The home page should
provide a dashboard-like look and feel complete with site navigation controls so that other
areas of the site are made accessible. In this chapter, you will see how to utilize some of the
new controls available in the Silverlight Toolkit to provide an easy navigation menu, as well
as give the users the ability to select a preferred theme for the site. Most sites these days allow
some kind of customization to be made from the user, and FitnessTrackerPlus will be no dif-
ferent. In the previous chapter, you also saw how to use the new navigation framework to
provide page navigation with full browser history integration. Now you will see how to also use
the fragment navigation aspect of this framework to ensure that you can continue to provide a
master page-like interface that allows you to reuse the banner and footer areas created earlier.
Anytime you can avoid duplicating user interface code, you will be one step ahead of the game.

In addition to the site navigation and theme selection, the user home page will provide access to
basic account settings such as login information and security questions and answers. You’ll also
see how to easily provide site announcements from this home page so that you can let users know
of things such as site updates or enhancements just in case the e-mail reminder you sent to them
ended up in the spam folder. By the end of this chapter, you will have some placeholders for the
food, exercise, and measurement summary controls that you will be creating later on in the book.

Problem

Once users log in to any site they expect certain things to be available, not the least of which is
some way to navigate to other areas of the site. In a traditional ASP.NET site, several different
solutions can be used, ranging from traditional hyperlinks in a list to ASP.NET sitemap and

4

534045c04.indd 141 3/14/10 2:19:20 PM

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

142 ❘ ChaPter 4 Welcome Home

menu controls that are tied to a data source. These sitemaps typically include all of the pages that
the user could navigate to while logged into the site. The various ASP.NET controls usually require
minimal code to be written and provide quick and easy site navigation. Menu controls typically reside
across the top of the page or somewhere on the left side of the page in a list. It is also common to
add some JavaScript to provide dynamic menu choices or use CSS techniques to create rollover
effects for the various menu items.

adding Navigation
One thing that you can usually take for granted in a traditional site is that no matter what technol-
ogy you decide on for site navigation, you always have browser history support and browser control
integration for free. It requires no extra code to have your pages added to the browser history or for
the correct page to be displayed when the user clicks the Back and Forward buttons on the browser.
The exception to this is, of course, AJAX-based solutions. If your site requires AJAX to navigate
between various page elements you no doubt have to resort to all sorts of JavaScript tricks or special
controls to hook into the browser history and also to react to various browser navigation button
clicks.

Applications developed in previous versions of Silverlight had the same challenges as AJAX based
solutions in that there is no default integration with the browser history or navigation controls.
Luckily, as you have seen in the previous chapters, Silverlight 4 has a new navigation framework that
provides this functionality with very little work on your part. You already have a main site home
page that includes a banner and footer area. As with ASP.NET master pages, you will want to hold
onto the banner and footer area for all other pages that are visible when logged in. Because you’ll
need some kind of site navigation control on the user home page, the control needs to stay visible as
the user navigates through the site pages. At first glance, this seems as easy as adding another navi-
gation frame to the user interface and adding the appropriate page controls for all the necessary site
pages. Unfortunately, the navigation framework does not support nested navigation frames integrat-
ing with the web browser. This will be the first problem you’ll need to tackle in this chapter as you
don’t want to have to duplicate the site navigation menu controls on every single page you create.

Providing Site announcements
In addition to site navigation, the user home page should provide access to account settings, theme
selection, and site announcements. Because users will be hitting this page after every login, it can be
a great place to notify them of any important announcements such as scheduled maintenance, or even
planned site enhancements. For the most part, site announcements that involve planned maintenance
and down time should typically be communicated to your users via e-mail. In the offhand chance
those e-mails reach the spam folder as opposed to the Inbox, you can make use of the announcements
control to get your message across.

User-Selectable themes
Every user has a different idea about how the site should ideally look. Over the last few years it’s
become common practice to provide several theme choices that a user can apply to all of the controls

534045c04.indd 142 3/14/10 2:19:20 PM

Design ❘ 143

on the site. It may seem like an unimportant feature, but most users will really appreciate having the
ability to tailor the color scheme to something that is more in line with their own individual style.
ASP.NET 2.0 has a complete theme and control skinning engine that make it relatively easy for
developers to provide multiple themes for a site.

Although Silverlight does not offer the same mechanisms as ASP.NET, through the use of the
Silverlight Toolkit, multiple themes are now supported. Even more important, the ability to dynam-
ically switch themes through the use of the implicit styling feature built into the runtime is dramatically
improved in Silverlight 4. In previous versions of Silverlight, you essentially had to reboot the user
interface in order to change the theme of the application on-the-fly. This would require that you reload
the entire visual tree of controls and usually resulted in a sluggish experience for the user. Depending on
the size of the site and the number of controls that needed to have styles reapplied, it could take a con-
siderable amount of time for the process to finish. In this chapter, you will see how, thanks to implicit
styling and the new themes available in the toolkit, you can switch out the current theme of the site at
runtime with just a few lines of code.

account Settings
In Chapter 3, when users registered for the site, you made sure to collect only the minimum amount
of information required to use the site. You will need to give users a way to update this information. A
page showing the current user’s account settings should include a way to update the e-mail address,
password, security question, and security answer. It should also show when the account was created.
This page will become even more important as you begin to add premium features to the site in a
later chapter.

adding a Dashboard
One final problem needs to be tackled with this home page and that is answering the question of what
should be displayed on this page immediately following the login. Many sites are offering a dashboard-
style look and feel for home pages and you can provide the same thing with FitnessTrackerPlus. At a
minimum, you should provide a welcome message, the current date, and any site announcements.
In addition, this would be a great place to display the food, exercise, and measurement summary
controls that were outlined in the first chapter. Although you haven’t created the pages required for
those features, at this point you can still decide how these will be arranged and roughly how much
space each of these summary controls will take up on the user home page. For now, placeholders for
these controls will be sufficient until you finish up the work required for those individual controls.

DeSigN

Once again, you have several problems outlined that need to be solved in order to have a fully func-
tional user home page. In general, you need a design that provides a place for site announcements,
theme selection, site navigation, account settings and summary controls for food, exercise, and mea-
surements. As in the previous chapter, it will be best to outline detailed versions of the requirements for

534045c04.indd 143 3/14/10 2:19:20 PM

144 ❘ ChaPter 4 Welcome Home

these features before moving further on in the design process. Here is a breakdown of the require-
ments that need to be satisfied for this chapter:

Site navigation:➤➤ Users will need links to food, exercise, and measurement log pages as well as
any other additional pages that are going to be created in the future.

Navigation framework: ➤➤ Navigation framework should be used where possible to ensure tight
integration with the web browser history and navigation controls.

Welcome message: ➤➤ Today’s date and a welcome message should be displayed.

Announcement list: ➤➤ Users should be able to view a list of site announcements as hyperlinks
that, when clicked, display a modal child window containing the announcement text.

Editable account settings: ➤➤ Users should be able to view and modify account settings such as
e-mail address, password, security question, and security answer.

Dashboard controls: ➤➤ Summary controls for food, exercise, and measurements should appear
on the first available view after login.

Theme selection: ➤➤ Users should be able to easily select from several themes, and the current
theme should be changed dynamically at runtime immediately following the selection.

Theme storage: ➤➤ The selected theme should be saved to the user’s profile and should also be
restored upon the next successful login.

Logout link: ➤➤ Users will continue to need a link that performs logout functionality and redirects
the user back to the main site home page.

With the requirements set, you can move onto the specific design elements for each feature. As in the
previous chapter, I will break down the design and solution for the chapter into the following order:
User Interface, Database, Data Access, Business Logic, and finally, User Interface Code Behind.

User home Page
The user home page, as outlined in the introduction, has two major responsibilities:

To provide a place for site navigation➤➤

To provide an area where all other pages of the site will be displayed➤➤

This will be very similar to the old HTML frame-style design or ASP.NET master pages. You want
to keep the existing banner and footer areas visible at all times so the design will have to include
those areas. Everything you need to provide has been outlined in the previous requirements, so let’s
start by looking at the user interface design.

User Interface

ASP.NET provides a great feature called master pages, which makes it simple to reuse areas of a site
across multiple pages. For example, if you have a banner and footer area that you want to display across
every page of the site, you don’t want to have to copy the common code across every ASP.NET page
in the site. Instead, you can simply create a new master page to hold the banner and footer content
and then add a ContentPlaceHolder control to the page, which will be responsible for holding the

534045c04.indd 144 3/14/10 2:19:21 PM

Design ❘ 145

actual page content. Because there is no feature in Silverlight that corresponds directly with master
pages, you will need to look elsewhere in the framework and see if there is anything that the new
navigation framework provides that could potentially give you this behavior. You don’t want to
have to copy the banner and footer XAML code onto every single page, and you are already using
a navigation frame on the main site page so it would be best if you can figure out a way to provide a
nested navigation frame on the home page that would be responsible for displaying all other pages
that are available after login. This would allow you to retain the banner and footer areas that are
already being displayed. Of course, because the login control is currently visible in the banner area,
you will need to make sure that it is hidden after a successful login and made visible again when
the user logs out of the site. Just to make it a little easier to follow, let’s take a look at a visual of
what the user home page needs to look like. Figure 4-1 shows the basic user interface screen that
you’re building.

Page ContentNavigation

Footer Area

Today’s DateWelcome User

Banner Area Theme Selection

FigUre 4-1

Although it is a rough sketch of what the screen needs to look like, you can easily see that there is
an area for navigation, banner, footer, welcome message, today’s date, theme selection, and all other
page content.

In the previous chapter, you added a Frame control that holds all the main site content. After a success-
ful login, the source of the Frame is updated to display the UserHome.xaml page. Because this inner
Page control will be responsible for displaying the site navigation menu, you need to find a way to
add an additional nested Frame control to the UserHome.xaml page that will display the content
that is available to logged-in users. One drawback to adding more nested Frame controls, however, is
that you lose the nice browser button integration that currently exists with the outer Frame control.

534045c04.indd 145 3/14/10 2:19:30 PM

146 ❘ ChaPter 4 Welcome Home

The Silverlight Navigation Framework does not currently support the use of nested Frame controls
while maintaining tight integration with the browser history and navigation buttons.

So, what exactly does that mean? Well for starters, when you initially added the Frame control and
set its Source property to UserHome.xaml, you should have noticed that the Title property of the
UserHome.xaml Page class was automatically displayed in the browser’s title area. You also should
have noticed that clicking the browser’s Back and Forward buttons cycled through the various pages
that were visited with no additional code required. When you add another navigation Frame control
to the mix, you will effectively lose this capability for all of the nested pages that will reside in that
Frame. To better understand, take a look at what happens if you introduce a nested navigation Frame
to the default project created using the new Silverlight Navigation project template. After creating a
project with this template, you are left with one main navigation Frame with its source property set
to Home.xaml, as shown in Listing 4-1.

liStiNg 4-1: MainPage.xaml (located in the DefaultNavigationFrame project)

<UserControl x:Class=”DefaultNavigationFrame.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:navigation=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation”
 xmlns:uriMapper=”clr-
namespace:System.Windows.Navigation;
assembly=System.Windows.Controls.Navigation”>
 <Grid x:Name=”LayoutRoot” Style=”{StaticResource LayoutRootGridStyle}”>
 <Border x:Name=”ContentBorder” Style=”{StaticResource
ContentBorderStyle}”>
 <navigation:Frame x:Name=”ContentFrame”Style=”{StaticResource
ContentFrameStyle}” Source=”/Home” Navigated=”ContentFrame_Navigated”
NavigationFailed=”ContentFrame_NavigationFailed”>
 <navigation:Frame.UriMapper>
 <uriMapper:UriMapper>
 <uriMapper:UriMapping Uri=”“
MappedUri=”/Views/Home.xaml”/>
 <uriMapper:UriMapping Uri=”/{pageName}”
MappedUri=”/Views/{pageName}.xaml”/>
 </uriMapper:UriMapper>
 </navigation:Frame.UriMapper>
 </navigation:Frame>
 </Border>
 <Grid x:Name=”NavigationGrid” Style=”{StaticResource
NavigationGridStyle}”>
 <Border x:Name=”BrandingBorder” Style=”{StaticResource
BrandingBorderStyle}”>
 <StackPanel x:Name=”BrandingStackPanel”
Style=”{StaticResource BrandingStackPanelStyle}”>
 <ContentControl Style=”{StaticResource LogoIcon}”/>
 <TextBlock x:Name=”ApplicationNameTextBlock”
Style=”{StaticResource ApplicationNameStyle}” Text=”Application Name”/>

534045c04.indd 146 3/14/10 2:19:30 PM

Design ❘ 147

 </StackPanel>
 </Border>
 <Border x:Name=”LinksBorder” Style=”{StaticResource
LinksBorderStyle}”>
 <StackPanel x:Name=”LinksStackPanel”
Style=”{StaticResource LinksStackPanelStyle}”>
 <HyperlinkButton x:Name=”Link1”
Style=”{StaticResource LinkStyle}” NavigateUri=”/Home”
TargetName=”ContentFrame” Content=”home”/>
 <Rectangle x:Name=”Divider1” Style=”{StaticResource
DividerStyle}”/>
 <HyperlinkButton x:Name=”Link2”
Style=”{StaticResource LinkStyle}” NavigateUri=”/About”
TargetName=”ContentFrame” Content=”about”/>
 </StackPanel>
 </Border>
 </Grid>
 </Grid>
</UserControl>

As you can see, there are two possible links to click, one for viewing the about page, and another for
viewing the home page. Running the project at this point will display both the about and home page
titles in the browser, as shown in Figures 4-2 and 4-3.

FigUre 4-2

534045c04.indd 147 3/14/10 2:19:30 PM

148 ❘ ChaPter 4 Welcome Home

FigUre 4-3

Clicking the browser’s Back and Forward buttons will alternate between both pages updating the
title bar accordingly. Now let’s see what happens when you add another nested navigation Frame
to the home page. In order to do this, you will need to create a couple of additional content pages
that will display in the nested navigation Frame. In the Views directory, create two additional pages
called NestedContent.xaml and NestedAdditionalContent.xaml. Listing 4-2 shows the XAML code
for the NestedContent.xaml page.

liStiNg 4-2: NestedContent.xaml (located in the NestedNavigationFrame project)

<navigation:Page x:Class=”NestedNavigationFrame.NestedContent”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:navigation=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation”
 Title=”Nested Content Page”>
 <Grid x:Name=”LayoutRoot” Background=”White”>
 <TextBlock Text=”Nested Content” Style=”{StaticResource
HeaderTextStyle}”/>
 </Grid>
</navigation:Page>

534045c04.indd 148 3/14/10 2:19:31 PM

Design ❘ 149

The NestedAdditionalContent.xaml page shown in Listing 4-3 is basically the same code but with a
different Page Title and Text property on the TextBlock control. In this simple example, you only
need to add some text on the pages so that you can easily distinguish between the two pages when
navigation occurs. The Home.xaml that is created in the project needs to be modified to include the
inner navigation Frame and a couple of links to these new pages.

liStiNg 4-3: NestedAdditionalContent.xaml (located in the NestedNavigationFrame project)

<navigation:Page x:Class=”NestedNavigationFrame.Home”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:navigation=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation”
Title=”Home” Style=”{StaticResource PageStyle}”>
 <Grid x:Name=”LayoutRoot”>
 <ScrollViewer x:Name=”PageScrollViewer” Style=”{StaticResource
PageScrollViewerStyle}”>
 <StackPanel x:Name=”ContentStackPanel”>
 <TextBlock x:Name=”HeaderText” Style=”{StaticResource
HeaderTextStyle}” Text=”Home”/>
 <TextBlock x:Name=”ContentText” Style=”{StaticResource
ContentTextStyle}” Text=”Home page content”/>
 <navigation:Frame x:Name=”InnerNavigation”
HorizontalAlignment=”Stretch” HorizontalContentAlignment=”Stretch” />
 <HyperlinkButton Content=”View Nested Content”
NavigateUri=”/Views/NestedContent.xaml” TargetName=”InnerNavigation” />
 <HyperlinkButton Content=”View Additional Nested Content”
NavigateUri=”/Views/NestedAdditionalContent.xaml” TargetName=”InnerNavigation” />
 </StackPanel>
 </ScrollViewer>
 </Grid>
</navigation:Page>

When you click the links to perform the navigation on the inner Frame control, you will notice that
the browser title bar no longer reflects the Title property of the pages being displayed. Figures 4-4
and 4-5 show that regardless of which link is clicked, the browser’s title still reflects the original
home page title of the main navigation Frame.

If you use the browser’s Back and Forward buttons, you will also see that they no longer flip between
the nested and additional nested content pages. Another drawback is that you no longer have a
unique URL being displayed in the browser for each nested page, which effectively breaks any plans
you may have had for bookmarking or deep linking to these pages. So now it looks like nested
navigation Frame controls are going to cause some problems and may not achieve the desired effect
of simulating traditional ASP.NET master pages. Is there anything else available in the navigation
framework that could potentially help you to work around this limitation? The answer lies in the
fragment navigation feature of the navigation framework. This feature allows you to specify a URL
for nested pages by simply prefixing them with the $ character. Going back to the previous example
using fragment navigation, you could access the NestedContent.xaml page with the following URL:

http://localhost/FragmentNavigation.aspx#/Views/HomePage.xaml$NestedContent.

534045c04.indd 149 3/14/10 2:19:31 PM

150 ❘ ChaPter 4 Welcome Home

FigUre 4-4

FigUre 4-5

534045c04.indd 150 3/14/10 2:19:31 PM

Design ❘ 151

In order to make use of this feature, you have to first modify the Home.xaml page from the previous
sample so that the Tag properties of the HyperlinkButton controls are set to #NestedContent and
#NestedAdditionalContent. Prefixing the Tag values with the # character will tell the framework
that the URI being created is to be a fragment of the current page being viewed. Next, modify the
HyperlinkButton_Click event handler, as shown here:

private void HyperlinkButton_Click(object sender, RoutedEventArgs e)
{
 string tag = (sender as HyperlinkButton).Tag.ToString();

 NavigationService.Navigate(new Uri(String.Format(“/Views/Home.xaml{0}”,
tag), UriKind.Relative));
}

Code snippet Home.xaml.cs located in the FragmentNavigation project

Note that you are still creating a new URI using the Tag property, but now it is being appended to
the URI for Home.xaml. Basically, this will tell the navigation framework to navigate to the current
page with the specified fragment in the URI. Your work isn’t done yet, however, because now you
need to hook up to the FragmentNavigation event so that you can manually force the nested navi-
gation Frame to navigate to the page that was included in the fragment. Here is the event handler for
the FragmentNavigation event.

private void NavigationService_FragmentNavigation(object sender,
FragmentNavigationEventArgs e)
{
 if (e.Fragment == “NestedContent”)
 InnerNavigation.Navigate(new Uri(“/Views/NestedContent.xaml”,
UriKind.Relative));
 else if (e.Fragment == “NestedAdditionalContent”)
InnerNavigation.Navigate(new Uri(“/Views/NestedAdditionalContent.xaml”,
UriKind.Relative));
 else
 InnerNavigation.Content = null;
}

Code snippet Home.xaml.cs located in the FragmentNavigation project

Although the # character is required when forming the URI, the $ character is the one that is actu-
ally displayed in the URL. At this point, you can navigate between the pages and you will have full
browser history support as well as Back and Forward button functionality. Only the title is wrong.
Even though you are using the fragment feature and the nested pages have their Title property set,
the browser will still only use the main navigation frame page title in its display. You can change
it but it requires hooking up to the Navigating event of the NavigationService. When listening
to this event, you can find out what fragment is being navigated to and update the title of the page
this way.

private void NavigationService_Navigating(object sender,
NavigatingCancelEventArgs e)
{

534045c04.indd 151 3/14/10 2:19:31 PM

152 ❘ ChaPter 4 Welcome Home

 if (e.Uri.OriginalString.EndsWith(“NestedContent”))
 this.Title = “Nested Content”;
 else if (e.Uri.OriginalString.EndsWith(“NestedAdditionalContent”))
 this.Title = “Nested Addtional Content”;
 else
 this.Title = “HomePage Page”;
}

Code snippet Home.xaml.cs located in the FragmentNavigation project

Although this quick sample listens for the Navigate event from the home page, you could just as
easily listen for it in each nested page and update the title instead. Figures 4-6 and 4-7 show the new
nested pages with the updated URLs and page titles.

So after looking at all of the options provided with the navigation framework, it seems you can
achieve the desired user interface after all. This will let you keep the banner, footer, and navigation
area visible at all times without duplicating any of the XAML for those areas into any of the other
site pages.

FigUre 4-6

534045c04.indd 152 3/14/10 2:19:32 PM

Design ❘ 153

FigUre 4-7

Database, Data Access

This page should be able to utilize the users table and UserInformation LINQ to SQL classes
generated in the previous chapter. There should be no other database tables required or LINQ to
SQL classes.

Business Logic

The business logic for this page will need to consist of routines that grab the current UserInformation
object for the logged-in user and store it in some kind of global area. This is necessary for two rea-
sons—the first is to provide a way to grab the UserName so you can display a welcome message on this
screen, and the second is so that other pages won’t have to retrieve the UserInformation class over and
over again. In ASP.NET, you always have the option of storing information needed by multiple pages in
the Session object for the current user. Because everything you are doing is running only on the client,
you won’t have this collection available to you. By creating some kind of static, globally available class,

534045c04.indd 153 3/14/10 2:19:32 PM

154 ❘ ChaPter 4 Welcome Home

you have a place to store variables needed by other areas of the site. The UserInformation object for
the logged-in user contains the e-mail address, username, and unique database ID for that user, which
will no doubt be required throughout the site; therefore, you should plan on retrieving it from the user
home page but storing it globally for further use.

User Interface Code Behind

There are a few things that the user home page code behind will need to take care of. These are:

To retrieve the ➤➤ UserInformation object for the logged-in user.

To display a welcome message and current date when the page is first loaded.➤➤

To handle any navigation events fired by the navigation menu control residing on the page. ➤➤

When an event is fired from that control it should contain the page fragment that the nested
navigation Frame will need to navigate to. It will be up to the user home page to make sure
that the event handler is implemented and the nested Frame control content is updated when
the event is fired.

To provide users with the ability to switch the currently active site theme. There will be a list ➤➤

of themes available in the banner area and clicking on one of those themes should result in an
immediate update of the user interface and all of its controls to reflect that theme. In addition
to the theme being changed, you will need to update the user profile to reflect the choice so that
it can be restored on the next login. The current user’s profile properties should all be available
from the AuthenticationService created in the previous chapter so updating this value should
not be terribly difficult. In fact, the AuthenticationService will just delegate the actual profile
update request to the custom profile provider class you created in the previous chapter.

Navigation menu
The navigation menu control will need to provide the user with a list of links to the various pages
of the site. This will include links to the food, exercise and measurement logs, public journal, user
home, and, of course, logout. If any of these links are clicked, the menu will need to fire an event to
the parent to notify it of which link was clicked.

User Interface

The preference for this menu control would be to present a vertical list of page links with an icon on
the side of each link representing in some way the page that will be navigated to. For example, the
food log link should have an icon representing food followed by the text-based link to the food log
page. A control from the Silverlight Toolkit that should fit very well with the user interface for the
menu is the new Accordion control. This control presents a dynamically expanding list of items to
the user and you should be able to override the Content property of each AccordionItem to create
the list of page links required for the control.

534045c04.indd 154 3/14/10 2:19:32 PM

Design ❘ 155

Database, Data Access, Business Logic

This control will not need to utilize any of the database tables or LINQ to SQL classes. In fact, there
really won’t be any need to access any of the business logic services at all because it’s primary focus
is just firing an event to let the parent know which page link was clicked.

User Interface Code Behind

Because you will be using the new Accordion control to implement the menu, the code behind page
will need to listen for the SelectionChanged event. Once this event is trapped, you will need to create
a new custom event to fire to the parent that will include the page fragment to navigate to. Instead of
using a complex switch statement on all possible page links, you should just populate the Tag prop-
erty of each AccordionItem to reflect the page fragment that you need to include in the event. This
will keep the code for the navigation menu relatively simple, and it will be easy to add or remove
menu items in the future without having to worry about modifying an existing switch statement or
if else snippet.

Site announcements
The Site Annoucements control will be created to present a list of hyperlinks that the user can
click to display any site announcements in a modal child window. The control doesn’t need to be
overly complicated because you are only trying to relay certain important information about the
site to the user. A modal child window will present this information to the user without cluttering
up the user interface for the home page. The Site Annoucements control should also be visible as
soon as the user logs in to the site so it will need to be part of the default view being displayed on
the home page.

User Interface

The user interface for this control will be very simple—just a list of hyperlinks that show the
announcement headline from the database. If a user clicks on any of the hyperlinks, then the full
announcement text will be displayed in a modal child window.

Database, Data Access

The database design for this control consists of one table called announcements. The columns
required for this table are shown in Table 4-1.

table 4-1: Announcements

ColUmN Name tyPe DeSCriPtioN

id int Unique identity field for announcements

title varchar(500) Headline of site announcement

content varchar(max) Full text of announcement

created_date datetime Date announcement was added to database

534045c04.indd 155 3/14/10 2:19:32 PM

156 ❘ ChaPter 4 Welcome Home

Once again, you will be using LINQ to SQL to generate the classes required for the site announcements.
The generated class will simply be a 1:1 mapping of each column from the announcements table.

Business Logic

A new DomainService class will need to be created in order to provide full CRUD capabilities for
announcement objects. Although you won’t need the “create, delete, or update” functionality yet,
you should probably count on including it during the creation of the domain service class. When
providing the query method for the service, you should only worry about returning the latest site
announcements so that you don’t bother the user with out-of-date information. Going back 30 days
should be sufficient, and because each announcement has a corresponding created_date property,
creating this query should be a snap.

User Interface Code Behind

The code behind for the control should be fairly straightforward. You will need event handlers for
all of the HyperlinkButton controls. In the event handler routine, you will need to load the full text
of the selected announcement into a ChildWindow control and display that to the user. The Load
event of the control should handle actually retrieving all of the current announcements from the
WCF RIA Service.

account Settings
The account settings page will be made available through a hyperlink on the navigation control and
will provide access to things such as the current user’s e-mail address, username, password, security
question, security answer, and account creation date.

User Interface

The user interface for this page will require only some TextBlock and TextBox controls in a DataForm.
The DataForm control provides the easiest way to create a user interface that the user can utilize to
modify these values and it also makes it easy to ensure that some values such as the created_date
and username stay read-only. The DataForm also gives you the ability to completely customize which
fields are visible, and because you will be binding to a UserInformation instance with several prop-
erties that should not be visible to the user, you will need to ensure that those fields don’t appear on
the form.

Database, Data Access

The database and data access classes that will be used for this control were already created in the
previous chapter. You will really only need to make use of the users table and UserInformation
classes. No additional tables or LINQ to SQL classes should be necessary.

534045c04.indd 156 3/14/10 2:19:32 PM

Design ❘ 157

Business Logic

The business logic required for this control also was created in the previous chapter when you imple-
mented the user registration feature. This control will make use of the UserInformationService
and, specifically, the update functionality of the service. Even though the DataForm will have been
customized to hide certain properties, you can still make full use of the validation metadata that
was created with the service to validate the form before attempting to update.

User Interface Code Behind

The DataForm will be performing the bulk of the work required for this page, but you will still need
to load it with the UserInformation instance for the current user. That shouldn’t be a problem,
however, because you already retrieved it when the user home page was loaded and it should still be
available in the static global class discussed earlier. After the information is saved to the database,
it would probably be a good idea to inform the user that the changes have been saved. A simple
MessageBox confirming that the changes have been saved should be sufficient and can be displayed
in the DataForm’s ItemEditEnded event handler.

theme Selection
Although the theme selection feature will not require the use of a separate user control, it is still
important to think about how this functionality is going to work from the user home page. Instead
of using a ComboBox with a list of available themes, I prefer to create a list of colored squares that
are each filled with a solid color representing the various themes. When a user clicks the square,
that theme will be applied to the site and the selection will be saved to the user’s profile in the
CurrentTheme property. This list of themes should reside in the banner area in the same location
as the login control. Because the login control is still visible, you’ll need to hide it at login while still
displaying the list of themes. Rather than make what will inevitably be a poor attempt at creating
a theme from scratch, I recommend that FitnessTrackerPlus make use of the themes included in the
Silverlight Toolkit.

I outlined in the second chapter the various themes that are included in the toolkit. The themes
are available in both DLL and XAML forms. In most projects, you can just add a reference to the
DLL files for each theme that you want to incorporate into your project, but FitnessTrackerPlus will
potentially have its own custom controls and backgrounds that will need to be styled according to
the theme being selected. By default, you will see that FitnessTrackerPlus uses a blue to white gradi-
ent as the main background. If the user switches to the ShinyRed theme, this background won’t
look as good. Therefore, instead of adding references to all of the themes in the DLL form, you will
add the raw XAML files instead. By doing this you can easily add any custom styles that are specific
to FitnessTrackerPlus without having to add additional DLL projects to the solution. Either way will
work, but more likely than not, you’ll make frequent changes to these files. So, by working with just
the raw XAML, this should make the entire build process much cleaner. You can find the XAML
files for each theme in the Program Files\Microsoft SDKs\Silverlight\v4.0\Toolkit\Nov09\Themes\
XAML directory.

534045c04.indd 157 3/14/10 2:19:33 PM

158 ❘ ChaPter 4 Welcome Home

Fitness Summaries
As it currently stands, the user home page shows a welcome message, today’s date, and any site
announcements as the default view after logging in. What you want in addition to this is to display
daily summaries of foods, exercises, and mea-
surements. You don’t yet have a working food,
exercise, or measurement log page so there is no
point in trying to implement daily summaries yet
because you can’t log anything. You should,
however, think about how these summaries are
going to be displayed from the default view. For
now, you should think about creating placehold-
ers for these three controls. Figure 4-8 shows
what this updated user home page should look
like when you ultimately have all three summary
controls completed.

SolUtioN

Now it’s time to take a look at the solution for the features outlined for this chapter. In this section
you will learn:

Navigation Menu: ➤➤ How to make use of the new Accordion control from the Silverlight Toolkit
to make a navigation menu.

Dashboard:➤➤ Finally, the dashboard will be looked at and you will start to have the beginnings
of the daily fitness dashboard. Although you still won’t be able to enter foods, exercises, or
measurements, you can set up some placeholders for those summary controls.

Account settings:➤➤ In the previous chapter, you saw how easy it was to register users with the
new DataForm control combined with the WCF RIA Service validation feature. In this chapter,
you will see how you can utilize the validation feature without the DataForm in your own
custom data entry screen that will provide users with the ability to update existing account
settings such as e-mail address, security question/answer, and password.

Themes:➤➤ How to give your users the option to select a preferred theme for the site using the
supplied themes in the Silverlight Control Toolkit.

Site announcements:➤➤ The requirement to provide site announcements will be satisfied in this
section, and through the use of control templates and the ChildWindow control it couldn’t be
any easier.

The most important thing to take away from this solution section is that the improvements made to
Silverlight 4 and the Silverlight Toolkit have made all of these things dramatically easier to achieve
than in previous versions of the runtime.

Site Announcements
Measurement

Summary

Food Summary Exercise Summary

FigUre 4-8

534045c04.indd 158 3/14/10 2:19:33 PM

Solution ❘ 159

global Variables
Before getting into the various features and controls that make up the solution for this chapter,
I wanted to show you an important piece of the FitnessTrackerPlus application that will be used
throughout other areas of the book. As discussed earlier in this chapter, there really isn’t a client-
side alternative to the Session object that is available in ASP.NET. Of course, because Silverlight
applications are running on the client side only, they have no problem holding the state of various
objects. FitnessTrackerPlus has a Globals.cs file that in this case takes the place of the traditional
Session object from ASP.NET. Now there are about a million and one ways to share variables
across multiple pages in a Silverlight application. You could make use of the isolated storage feature,
or you could even create your own application level dictionary variable and call it Session.

For this particular application, only a handful of variables need to be made available across the appli-
cation so a single static class holding static variables will be sufficient. As variables that need to be
shared are required, they will be added to this file. The first two are the current UserInformation
instance, and the currently selected date. You will see why you need to save the selected date versus the
current date in the next chapter. Just about every page in FitnessTrackerPlus will need to make use of
some property from the current UserInformation object. In order to avoid making repeated calls to
the UserInformationService, you should retrieve the current UserInformation object after a success-
ful login and store it in the static Globals class. Listing 4-4 shows the code for the Globals class.

liStiNg 4-4: Globals.cs (located in the FitnessTrackerPlus project)

using System;
using FitnessTrackerPlus.Web.Data;
using System.Windows.Controls;

namespace FitnessTrackerPlus
{
 public static class Globals
 {
 public static UserInformation CurrentUser = null;
 public static DateTime SelectedDate = DateTime.Now;
 }
}

Navigation menu
The navigation menu is the gateway to the rest of the site. In traditional ASP.NET websites, it was
common to utilize one of the standard menu controls that were available along with a sitemap in
order to present the user with a list of available pages. Silverlight does not have any such control
or mechanism like a sitemap, but it does provide you with the tools necessary to make rich menu
systems with very little code customization. By making use of the new Accordion control from the
Silverlight Toolkit, you can create a menu that automatically expands and contracts with mouse
clicks complete with its own animation.

534045c04.indd 159 3/14/10 2:19:33 PM

160 ❘ ChaPter 4 Welcome Home

User Interface

The user interface for the NavigationMenu control consists of an Accordion control along with
several AccordionItem controls. The design called for a vertical list of navigation links. Each link
is to have an icon followed by some text for the navigation ink. Each item in the Accordion is
also to have a sub-menu that consists of HyperlinkButton controls for navigating to sub-pages.
The Accordion control has an Items property that allows you to add AccordionItem controls.
Each AccordionItem control contains a Header and Content property that can be customized
to meet your needs. In this case, you will use the Header to display an Icon and Feature text.
You will use the Content property to host any sub-menu items. Listing 4-5 shows the code for
the NavigationMenu that includes an AccordionItems collection that will lead the user to the
Dashboard, Food Log, Exercise Log, Measurement Log, and Public Journal pages. Listing 4-5
shows the XAML code for the NavigationMenu control.

liStiNg 4-5: NavigationMenu.xaml (located in the FitnessTrackerPlus project)

<UserControl x:Class=”FitnessTrackerPlus.Controls.NavigationMenu”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:toolkit=”clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Layout.Toolkit”>
 <UserControl.Resources>
 <Style x:Key=”NavigationMenuStyle” TargetType=”toolkit:Accordion”>
 <Setter Property=”ExpandDirection” Value=”Down” />
 <Setter Property=”Cursor” Value=”Hand” />
 </Style>
 <Style x:Key=”NavigationMenuItemStyle”
TargetType=”toolkit:AccordionItem”>
 </Style>
 <Style x:Key=”NavigationMenuItemLinkStyle”
TargetType=”HyperlinkButton”>
 <Setter Property=”Margin” Value=”20,0,0,10” />
 </Style>
 <Style x:Key=”NavigationMenuItemHeaderPanelStyle”
TargetType=”StackPanel”>
 <Setter Property=”Orientation” Value=”Horizontal” />
 <Setter Property=”Margin” Value=”0,0,0,10” />
 </Style>
 <Style x:Key=”NavigationMenuItemContentPanelStyle”
TargetType=”StackPanel”>
 <Setter Property=”Margin” Value=”0,10,0,0” />
 </Style>
 <Style x:Key=”NavigationMenuItemTextStyle” TargetType=”TextBlock”>
 <Setter Property=”Margin” Value=”10,0,0,0” />
 <Setter Property=”FontWeight” Value=”Bold” />
 </Style>
 <Style x:Key=”NavigationMenuFoodLogImageStyle” TargetType=”Image”>
 <Setter Property=”Source” Value=”/Images/foods.png” />
 <Setter Property=”Height” Value=”20” />
 <Setter Property=”Width” Value=”30” />
 </Style>
 <Style x:Key=”NavigationMenuExerciseLogImageStyle”
TargetType=”Image”>

534045c04.indd 160 3/14/10 2:19:34 PM

Solution ❘ 161

 <Setter Property=”Source” Value=”/Images/exercises.png” />
 <Setter Property=”Height” Value=”20” />
 <Setter Property=”Width” Value=”30” />
 </Style>
 <Style x:Key=”NavigationMenuMeasurementLogImageStyle”
TargetType=”Image”>
 <Setter Property=”Source” Value=”/Images/measurements.png” />
 <Setter Property=”Height” Value=”20” />
 <Setter Property=”Width” Value=”30” />
 </Style>
 <Style x:Key=”NavigationMenuPublicJournalImageStyle”
TargetType=”Image”>
 <Setter Property=”Source” Value=”/Images/journal.png” />
 <Setter Property=”Height” Value=”20” />
 <Setter Property=”Width” Value=”30” />
 </Style>
 <Style x:Key=”NavigationMenuHomeImageStyle” TargetType=”Image”>
 <Setter Property=”Source” Value=”/Images/home.png” />
 <Setter Property=”Height” Value=”20” />
 <Setter Property=”Width” Value=”30” />
 </Style>
 <Style x:Key=”NavigationMenuLogoutImageStyle” TargetType=”Image”>
 <Setter Property=”Source” Value=”/Images/logout.png” />
 <Setter Property=”Height” Value=”20” />
 <Setter Property=”Width” Value=”30” />
 </Style>
 </UserControl.Resources>
 <toolkit:Accordion x:Name=”MenuItems” Style=”{StaticResource
NavigationMenuStyle}”>
 <toolkit:Accordion.Items>
 <toolkit:AccordionItem Tag=”#Dashboard” Style=”{StaticResource
NavigationMenuItemStyle}”>
 <toolkit:AccordionItem.Header>
 <StackPanel Style=”{StaticResource
NavigationMenuItemHeaderPanelStyle}”>
 <Image Style=”{StaticResource
NavigationMenuHomeImageStyle}” />
 <TextBlock Text=”Home” Style=”{StaticResource
NavigationMenuItemTextStyle}” />
 </StackPanel>
 </toolkit:AccordionItem.Header>
 <toolkit:AccordionItem.Content>
 <StackPanel Style=”{StaticResource
NavigationMenuItemContentPanelStyle}”>
 <HyperlinkButton x:Name=”DashboardLink”
Content=”Dashboard” Tag=”#Dashboard” Style=”{StaticResource
NavigationMenuItemLinkStyle}” />
 <HyperlinkButton x:Name=”AccountSettingsLink”
Content=”Account Settings” Tag=”#AccountSettings” Style=”{StaticResource
NavigationMenuItemLinkStyle}” />
 </StackPanel>
 </toolkit:AccordionItem.Content>
 </toolkit:AccordionItem>
 <toolkit:AccordionItem Tag=”#FoodLog”>
 <toolkit:AccordionItem.Header>

continues

534045c04.indd 161 3/14/10 2:19:34 PM

162 ❘ ChaPter 4 Welcome Home

 <StackPanel Style=”{StaticResource
NavigationMenuItemHeaderPanelStyle}”>
 <Image Style=”{StaticResource
NavigationMenuFoodLogImageStyle}” />
 <TextBlock Text=”Foods” Style=”{StaticResource
NavigationMenuItemTextStyle}” />
 </StackPanel>
 </toolkit:AccordionItem.Header>
 <toolkit:AccordionItem.Content>
 <StackPanel Style=”{StaticResource
NavigationMenuItemContentPanelStyle}”>
 <HyperlinkButton x:Name=”FoodLogLink”
Content=”Food Log” Tag=”#FoodLog” Style=”{StaticResource
NavigationMenuItemLinkStyle}” />
 </StackPanel>
 </toolkit:AccordionItem.Content>
 </toolkit:AccordionItem>
 <toolkit:AccordionItem Tag=”#ExerciseLog”>
 <toolkit:AccordionItem.Header>
 <StackPanel Style=”{StaticResource
NavigationMenuItemHeaderPanelStyle}”>
 <Image Style=”{StaticResource
NavigationMenuExerciseLogImageStyle}” />
 <TextBlock Text=”Exercises”
Style=”{StaticResource NavigationMenuItemTextStyle}” />
 </StackPanel>
 </toolkit:AccordionItem.Header>
 <toolkit:AccordionItem.Content>
 <StackPanel Style=”{StaticResource
NavigationMenuItemContentPanelStyle}”>
 <HyperlinkButton x:Name=”ExerciseLogLink”
Content=”Exercise Log” Tag=”#ExerciseLog” Style=”{StaticResource
NavigationMenuItemLinkStyle}” />
 </StackPanel>
 </toolkit:AccordionItem.Content>
 </toolkit:AccordionItem>
 <toolkit:AccordionItem Tag=”#MeasurementLog”>
 <toolkit:AccordionItem.Header>
 <StackPanel Style=”{StaticResource
NavigationMenuItemHeaderPanelStyle}”>
 <Image Style=”{StaticResource
NavigationMenuMeasurementLogImageStyle}” />
 <TextBlock Text=”Measurements”
Style=”{StaticResource NavigationMenuItemTextStyle}” />
 </StackPanel>
 </toolkit:AccordionItem.Header>
 <toolkit:AccordionItem.Content>
 <StackPanel Style=”{StaticResource
NavigationMenuItemContentPanelStyle}”>
 <HyperlinkButton x:Name=”MeasurementLogLink”
Content=”Measurement Log” Tag=”#MeasurementLog” Style=”{StaticResource
NavigationMenuItemLinkStyle}” />
 </StackPanel>

liStiNg 4-5 (continued)

534045c04.indd 162 3/14/10 2:19:34 PM

Solution ❘ 163

 </toolkit:AccordionItem.Content>
 </toolkit:AccordionItem>

 <toolkit:AccordionItem Tag=”Logout”>
 <toolkit:AccordionItem.Header>
 <StackPanel Style=”{StaticResource
NavigationMenuItemHeaderPanelStyle}”>
 <Image Style=”{StaticResource
NavigationMenuLogoutImageStyle}” />
 <TextBlock Text=”Logout” Style=”{StaticResource
NavigationMenuItemTextStyle}” />
 </StackPanel>
 </toolkit:AccordionItem.Header>
 </toolkit:AccordionItem>
 </toolkit:Accordion.Items>
 </toolkit:Accordion>
</UserControl>

Each AccordionItem has its Tag property set to a value that will match a
UriMapping entry in the App.xaml file. In the previous chapter, you added
entries in the UriMapper that corresponded to several of the main site pages.
Now you just need to add additional entries for all the links defined in the
NavigationMenu control. The following code shows the updated UriMapper
declaration.

<uri:UriMapper x:Key=”UriMap”>
 <uri:UriMapping Uri=”Home”
MappedUri=”/Views/Home.xaml” />
 <uri:UriMapping Uri=”About”
MappedUri=”/Views/About.xaml” />
 <uri:UriMapping Uri=”Contact”
MappedUri=”/Views/Contact.xaml” />
 <uri:UriMapping Uri=”Privacy”
MappedUri=”/Views/Privacy.xaml” />
 <uri:UriMapping Uri=”Signup”
MappedUri=”/Views/Signup.xaml” />
 <uri:UriMapping Uri=”Terms”
MappedUri=”/Views/Terms.xaml” />
 <uri:UriMapping Uri=”UserHome”
MappedUri=”/Views/UserHome.xaml” />
 <uri:UriMapping Uri=”Dashboard”
MappedUri=”/Views/Dashboard/Dashboard.xaml” />
 <uri:UriMapping Uri=”AccountSettings”
MappedUri=”/Views/Dashboard/AccountSettings.xaml” />
 <uri:UriMapping Uri=”FoodLog”
MappedUri=”/Views/Food/FoodLog.xaml” />
 <uri:UriMapping Uri=”ExerciseLog”
MappedUri=”/Views/Exercise/ExerciseLog.xaml” />
 <uri:UriMapping Uri=”MeasurementLog”
MappedUri=”/Views/Measurement/MeasurementLog.xaml” />
</uri:UriMapper>

Code snippet App.xaml located in the FitnessTrackerPlus project

534045c04.indd 163 3/14/10 2:19:35 PM

164 ❘ ChaPter 4 Welcome Home

The Accordion control itself will fire a SelectionChanged event when the user makes a selection. Each
sub-menu item consists of a HyperlinkButton that will fire its own Click event. Sub-menu items
have their own Tag property set as well, which you will use to force the nested navigation Frame to
load the appropriate page. That is pretty much all that is required to get the NavigationMenu user
interface working.

Database, Data Access, Business Logic

As stated in the design, there are no additional database or data access code requirements for the
NavigationMenu control. There is also no requirement for additional business logic code. All of the
functionality for this control is contained in the code behind file.

User Interface Code Behind

The first step required for the code behind of this control is to set up some Click event handlers for
each of the sub-menu HyperlinkButton controls. You should do this in the Loaded event for the
Page to be sure that the controls are available. In the following code, each of the HyperlinkButton
controls have their Click event mapped to a NavigationLink_Click event handler method and the
main Accordion control has a SelectionChanged event handler assigned.

Loaded += (s, e) =>
{
 MenuItems.SelectionChanged += new
SelectionChangedEventHandler(NavigationMenu_SelectionChanged);

 DashboardLink.Click += new RoutedEventHandler(NavigationLink_Click);
 AccountSettingsLink.Click += new RoutedEventHandler(NavigationLink_Click);
 FoodLogLink.Click += new RoutedEventHandler(NavigationLink_Click);
 ExerciseLogLink.Click += new RoutedEventHandler(NavigationLink_Click);
 MeasurementLogLink.Click += new RoutedEventHandler(NavigationLink_Click);
};

Code snippet NavigationMenu.xaml.cs located in the FitnessTrackerPlus project

The next step is to tackle the Accordion event handler, which in this case is the NavigationMenu_
SelectionChanged method. As you can see from the following code, the Tag value is extracted
from the AccordionItem that was clicked and a custom NavigationMenuItemSelected event is
fired so that the listener of the event can take care of navigating to the correct URI fragment.

public class NavigationMenuEventArgs
{
 public string NextAction { get; set; }

 public NavigationMenuEventArgs() { }

 public NavigationMenuEventArgs(string nextAction)
 {
 NextAction = nextAction;
 }
}

public delegate void NavigationMenuEventHandler(object sender,

534045c04.indd 164 3/14/10 2:19:35 PM

Solution ❘ 165

NavigationMenuEventArgs e);

public event NavigationMenuEventHandler NavigationMenuItemSelected;

private void FireNavigationEvent(string nextAction)
{
 if (!String.IsNullOrEmpty(nextAction))
 NavigationMenuItemSelected(this,
new NavigationMenuEventArgs(nextAction));
}

private void NavigationMenu_SelectionChanged(object sender,
SelectionChangedEventArgs e)
{
 string nextAction = (MenuItems.SelectedItem as AccordionItem).Tag.ToString();

 if (NavigationMenuItemSelected != null)
 FireNavigationEvent(nextAction);
}

Code snippet NavigationMenu.xaml.cs located in the FitnessTrackerPlus project

Handling the sub-menu item Click event handler is very similar to the main Accordion con-
trol’s handler. In the following code, the value of the Tag property is extracted and passed to
the FireNavigationEvent method resulting in essentially the same behavior as the Accordion
SelectionChanged event handler.

private void NavigationLink_Click(object sender, RoutedEventArgs e)
{
 string nextAction = (sender as HyperlinkButton).Tag.ToString();
 FireNavigationEvent(nextAction);
}

Code snippet NavigationMenu.xaml.cs located in the FitnessTrackerPlus project

It would be nice if this could all be done in one method, but since the Accordion SelectionChanged
event handler requires a method signature with a SelectionChangedEventArgs parameter, and the
HyperlinkButton uses a standard RoutedEventArgs parameter you will need to maintain both
handlers.

User home Page
The home page, as discussed during the design stage, has a couple of primary responsibilities such
as providing navigation to the rest of the areas of the site, providing the ability to switch themes,
and taking care of welcoming the user to the site. This page is the first page users see after logging in
and needs to have a very simple easy to follow interface. Just a navigation menu on the left, welcome
message, some themes to select from, and a placeholder for the Dashboard control and any other
pages that will need to be displayed.

534045c04.indd 165 3/14/10 2:19:35 PM

166 ❘ ChaPter 4 Welcome Home

User Interface

The user interface for the home page is actually fairly simple. I already discussed how you can still
make use of a nested navigation Frame earlier so I won’t repeat that lecture. In addition to the nested
navigation Frame, you will have a separate NavigationMenu control. You may have noticed that
throughout the user interface code on FitnessTrackerPlus, I have suggested the use of DockPanel con-
trols for overall layout. This is a great control that was introduced first in the Silverlight Toolkit, but
now is actually part of the Silverlight 4 runtime and can be found in the System.Windows.Controls
assembly. You could always figure out a way to do similar layouts with Grid and StackPanel con-
trols, but the DockPanel just makes it so much easier to do things such as alignment and filling.

You can see in Listing 4-6 that the DockPanel contains the NavigationMenu control and the
nested navigation Frame control. The LastChildFill property of the DockPanel is set to true,
which forces the navigation Frame to expand to all the remaining area. The beauty of this is that,
when the user enlarges the browser window, the navigation Frame automatically expands and the
NavigationMenu stays the same. You don’t have to write any complex code to keep track of the
browser window size and resize the navigation Frame content accordingly. I still think this is one of
the most useful controls in the runtime and doesn’t get used enough.

The InnerNavigation control has a default source of Dashboard. This is done
so that the Dashboard control, which you will see shortly, is always the first item
displayed on the user home page. This control will present the welcome message,
announcements, food, exercise, and measurement summary controls.

liStiNg 4-6: UserHome.xaml (located in the FitnessTrackerPlus project)

<navigation:Page x:Class=”FitnessTrackerPlus.Views.UserHome”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:navigation=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation”
 xmlns:controls=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls”
 xmlns:fitnesstrackerplus=”clr-namespace:FitnessTrackerPlus.Controls”
 Title=”FitnessTrackerPlus-User Home”>
 <navigation:Page.Resources>
 <Style x:Key=”MainDockPanelStyle” TargetType=”controls:DockPanel”>
 <Setter Property=”LastChildFill” Value=”True” />
 </Style>
 <Style x:Key=”NavigationMenuStyle”
TargetType=”fitnesstrackerplus:NavigationMenu”>
 <Setter Property=”controls:DockPanel.Dock” Value=”Left” />
 </Style>
 <Style x:Key=”InnerFrameStyle” TargetType=”navigation:Frame”>
 <Setter Property=”HorizontalContentAlignment”
Value=”Stretch” />

534045c04.indd 166 3/14/10 2:19:36 PM

Solution ❘ 167

 <Setter Property=”Source” Value=”Dashboard” />
 </Style>
 </navigation:Page.Resources>
 <controls:DockPanel Style=”{StaticResource MainDockPanelStyle}”>
 <fitnesstrackerplus:NavigationMenu x:Name=”NavigationMenu”
Style=”{StaticResource NavigationMenuStyle}” />
 <navigation:Frame x:Name=”InnerNavigation” Style=”{StaticResource
InnerFrameStyle}” />
 </controls:DockPanel>
</navigation:Page>

Database, Data Access, Business Logic

As explained in the “Design” section, there are no new database tables or LINQ to SQL classes
required for the user home page. Because this page is really mostly a placeholder for other con-
tent, its primary focus is on providing navigation by listening for events being fired from the
NavigationMenu control. Consequently, there is no additional business logic required for the user
home page.

User Interface Code Behind

With no new business logic or LINQ to SQL classes to worry about, you just need to implement the
event handlers for the NavigationMenu in the code behind. You already saw that the NavigationMenu
control works its magic by firing an event containing the URI to navigate to. In Listing 4-7, the user
home page just hooks up the event and makes use of the Navigate method on the inner navigation
Frame to ensure that the requested content is displayed.

liStiNg 4-7: UserHome.xaml.cs (located in the FitnessTrackerPlus project)

using System;
using System.Windows.Controls;
using System.Windows.Navigation;
using FitnessTrackerPlus.Controls;

namespace FitnessTrackerPlus.Views
{
 public partial class UserHome : Page
 {
 public UserHome()
 {
 InitializeComponent();
 }

#region Control Event Handlers

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 base.OnNavigatedTo(e);

 NavigationService.FragmentNavigation += new
FragmentNavigationEventHandler(NavigationService_FragmentNavigation);

continues

534045c04.indd 167 3/14/10 2:19:36 PM

168 ❘ ChaPter 4 Welcome Home

 NavigationMenu.NavigationMenuItemSelected += new
NavigationMenu.NavigationMenuEventHandler(NavigationMenu_
NavigationMenuItemSelected);
 }

 private void NavigationService_FragmentNavigation(object sender,
FragmentNavigationEventArgs e)
 {
 // Extract the fragment URI and navigate to the desired page
 // this should be FoodLog, ExerciseLog, MeasurementLog, etc...

 if (!String.IsNullOrEmpty(e.Fragment))
 InnerNavigation.Navigate(new Uri(e.Fragment,
UriKind.Relative));
 }

 private void NavigationMenu_NavigationMenuItemSelected(object sender,
FitnessTrackerPlus.Controls.NavigationMenuEventArgs e)
 {
 // If the user clicked logout handle it as a special case
 // log the user out of the site and navigate to the main home page

 if (e.NextAction == “Logout”)
 {
 WebContext.Current.Authentication.LoggedOut += (se, ev) =>
 {
 NavigationService.Navigate(new Uri(“Home”,
UriKind.Relative));
 };

 WebContext.Current.Authentication.Logout(false);
 }
 else
 NavigationService.Navigate(new Uri(e.NextAction,
UriKind.Relative));
 }

#endregion
 }
}

In Listing 4-7, you probably noticed a special case in the NavigationMenuEventArgs handler. The
logout URI is fired from the NavigationMenu when the user wishes to log out of the site. There is no
real page to load for this, so this special case is handled simply by navigating back to the main site home
page. The authentication service will take care of removing the actual authentication token that exists
for the session when the WebContext.Current.Logout method is called.

liStiNg 4-7 (continued)

534045c04.indd 168 3/14/10 2:19:36 PM

Solution ❘ 169

Dashboard
You now have the user home page and navigation menu system in place. If you were to run the
application and log in, you would be presented with the navigation menu and a blank area to the
right of it. The following section covers the Dashboard page, which is the first available view that
the navigation Frame displays. The Dashboard control will be the default view that is displayed after
every login. You will need to make use of the UserInformation object stored earlier in the Globals
class in order to present a custom welcome message to the user. Additionally, this Dashboard page
will need to contain controls for site announcements as well as food, exercise, and measurement
summary controls. You won’t have any implementation for the last three mentioned but you will at
least have placeholders and a basic UI layout complete.

User Interface

For the user interface, you will need to divide the screen into four equal sections. You need to display
site announcements along with food, exercise, and measurement summaries. It would also be nice if
as the browser window was expanded each of these four controls equally increased in size along with
it. Listing 4-8 shows that you can easily achieve this effect by using the * notation on the Grid row
and column definitions. By assigning a row height of .5* and a column width of .5*, you will essen-
tially have two rows and two columns with each row taking up 50 percent of available height, and
each column taking up 50 percent of available width. The Grid definition calls for two rows and two
columns, which splits the Grid into four equal parts, each of which will contain a summary control
or the site announcements.

liStiNg 4-8: Dashboard.xaml (located in the FitnessTrackerPlus project)

<navigation:Page x:Class=”FitnessTrackerPlus.Views.Dashboard.FitnessDashboard”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:navigation=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation”
 xmlns:controls=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls”
 xmlns:fitnesstrackerplus=”clr-namespace:FitnessTrackerPlus.Views.Dashboard”
 Title=”FitnessTrackerPlus-Fitness Dashboard”>
 <navigation:Page.Resources>
 <Style x:Key=”WelcomeAreaDockStyle” TargetType=”controls:DockPanel”>
 <Setter Property=”LastChildFill” Value=”False” />
 <Setter Property=”Margin” Value=”10,0” />
 </Style>
 <Style x:Key=”WelcomeTextStyle” TargetType=”TextBlock”>
 <Setter Property=”FontSize” Value=”14” />
 </Style>
 <Style x:Key=”CurrentDateStyle” BasedOn=”{StaticResource
WelcomeTextStyle}” TargetType=”TextBlock”>
 <Setter Property=”Margin” Value=”0,0,10,0” />
 <Setter Property=”controls:DockPanel.Dock” Value=”Right” />
 </Style>
 <Style x:Key=”SummaryControlStyle” TargetType=”UserControl”>

continues

534045c04.indd 169 3/14/10 2:19:36 PM

170 ❘ ChaPter 4 Welcome Home

 <Setter Property=”Margin” Value=”10” />
 </Style>
 </navigation:Page.Resources>
 <Grid x:Name=”LayoutRoot”>
 <Grid.RowDefinitions>
 <RowDefinition Height=”20” />
 <RowDefinition Height=”.5*” />
 <RowDefinition Height=”.5*” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”.5*” />
 <ColumnDefinition Width=”.5*” />
 </Grid.ColumnDefinitions>
 <controls:DockPanel Style=”{StaticResource WelcomeAreaDockStyle}”
Grid.Row=”0” Grid.Column=”0” Grid.ColumnSpan=”2”>
 <TextBlock x:Name=”UserName” Style=”{StaticResource
WelcomeTextStyle}” />
 <TextBlock x:Name=”CurrentDate” Style=”{StaticResource
CurrentDateStyle}” />
 </controls:DockPanel>
 <fitnesstrackerplus:Announcements x:Name=”Announcements”
Style=”{StaticResource SummaryControlStyle}” Grid.Row=”1” Grid.Column=”0” />
 <fitnesstrackerplus:MeasurementSummary x:Name=”MeasurementSummary”
Style=”{StaticResource SummaryControlStyle}” Grid.Row=”1” Grid.Column=”1” />
 <fitnesstrackerplus:FoodSummary x:Name=”FoodSummary”
Style=”{StaticResource SummaryControlStyle}” Grid.Row=”2” Grid.Column=”0” />
 <fitnesstrackerplus:ExerciseSummary x:Name=”ExerciseSummary”
Style=”{StaticResource SummaryControlStyle}” Grid.Row=”2” Grid.Column=”1” />
 </Grid>
</navigation:Page>

If you were to run the application, you would notice that all four areas expand in size along with
the size of the browser window, an effect that was difficult to achieve in ASP.NET without the heavy
use of JavaScript. Figure 4-9 shows the site as it stands, complete with the NavigationMenu and
Dashboard.

Database, Data Access, Business Logic

This may seem like a broken record, but yet again no new database or data access classes are required
to get this Dashboard control rolling. Don’t worry—you will be adding database tables and LINQ to
SQL classes soon enough. In many ways, this is a testament to the power of using a framework like
LINQ to SQL along with the new WCF RIA Services in that much of the boring middle-tier code
that had to be created by hand is now created by the wizard and there really isn’t much customization
required to get it working in your own solution.

User Interface Code Behind

The Dashboard control has a very simple code behind file shown here in Listing 4-9 that basically
just loads all of the various summary controls, loads the site announcements, and sets the welcome
message to the current user’s e-mail address. Finally, the current date is updated and displayed.

liStiNg 4-8 (continued)

534045c04.indd 170 3/14/10 2:19:36 PM

Solution ❘ 171

FigUre 4-9

liStiNg 4-9: Dashboard.xaml.cs (located in the FitnessTrackerPlus project)

using System;
using System.Windows.Controls;
using System.Windows.Navigation;
using FitnessTrackerPlus.Web.Data;

namespace FitnessTrackerPlus.Views.Dashboard
{
 public partial class FitnessDashboard: Page
 {
 public FitnessDashboard()
 {
 InitializeComponent();
 }

#region Control Event Handlers

 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 Announcements.LoadAnnouncements();
 FoodSummary.LoadFoodSummary();

continues

534045c04.indd 171 3/14/10 2:19:37 PM

172 ❘ ChaPter 4 Welcome Home

 ExerciseSummary.LoadExerciseSummary();
 MeasurementSummary.LoadMeasurementSummary();

 UserName.Text = String.Format(“Welcome {0}”,
Globals.CurrentUser.email_address);
 CurrentDate.Text = DateTime.Now.ToLongDateString();
 }

#endregion
 }
}

account Settings
Remember how just a short time ago I was bragging that only minimal code was required to get to
this point? You probably thought that this was just going to be way too easy. Well, now you’ll have
the first real challenge of this chapter. The “Design” section required that users have the ability to
modify existing account settings such as the e-mail address, password, security question, and secu-
rity answer. You might think that this would be a perfect place to have just the DataForm control
that worked so well during the user registration. As the old saying goes—if it looks too good to be
true well, in this case it is.

You may have figured that this feature would be as simple as grabbing the UserInformation object
stored in the Globals class and passing it to a DataForm. Let the DataForm do all of the work and
implement an UpdateUser method and be done with it. Unfortunately, it isn’t so simple; although
this would work great for updating the e-mail address and security question, it all falls apart when
users update the current password or security answer. Do you have any idea as to why this may not
be a great idea? Okay, I will give one quick hint—think about what the values of the password and
security answer probably look like in the UserInformation object after they are retrieved from
the UserInformationService. If you guessed that the values of these variables are encrypted,
congratulations—you didn’t win anything, but at least I know you paid attention in the last chapter.
Because the values are encrypted, you can’t just bind the UserInformation object to a DataForm
and use the generated form as you did in the user registration screen; for the account settings page,
you will need to do a little bit more work up front. The good news is that you can still easily make
use of the validation metadata that you created on the UserInformation object so client-side valida-
tion will still work just as easily. Let’s take a look at how all of this is going to work.

User Interface

For the user interface, you now know that you can’t just use a DataForm, which of course would be
the easiest solution. So instead, you will need to manually create a data entry form that provides
fields for e-mail address, password, security question, and security answer. Regular TextBox con-
trols can be used for the e-mail address and security question, but you should use the PasswordBox
control for password, confirm password, and security answer fields. Listing 4-10 shows the XAML
code for the account settings page.

liStiNg 4-9 (continued)

534045c04.indd 172 3/14/10 2:19:37 PM

Solution ❘ 173

liStiNg 4-10: AccountSettings.xaml (located in the FitnessTrackerPlus project)

<navigation:Page x:Class=”FitnessTrackerPlus.Views.Dashboard.AccountSettings”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:navigation=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation”
 xmlns:controls=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls”
 xmlns:data=”clr-
namespace:System.Windows.Controls; assembly=System.Windows.Controls.Data.DataForm”
 xmlns:fitnesstrackerplus=”clr-namespace:FitnessTrackerPlus.Controls”
 Title=”FitnessTrackerPlus-Account Settings”>
 <navigation:Page.Resources>
 <Style x:Key=”AccountSettingsHeaderStyle” BasedOn=”{StaticResource
HeaderTextStyle}” TargetType=”TextBlock”>
 <Setter Property=”Text” Value=”Account Settings” />
 </Style>
 <Style x:Key=”AccountSettingsBorderStyle” TargetType=”Border”>
 <Setter Property=”BorderBrush” Value=”#FF000000” />
 <Setter Property=”BorderThickness” Value=”5” />
 <Setter Property=”CornerRadius” Value=”5” />
 <Setter Property=”Width” Value=”400” />
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 </Style>
 <Style x:Key=”AccountSettingsContainerPanelStyle”
TargetType=”StackPanel”>
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 </Style>
 <Style x:Key=”AccountSettingsStackPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”Orientation” Value=”Horizontal” />
 </Style>
 <Style x:Key=”AccountSettingsTextStyle” TargetType=”TextBlock”>
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”Width” Value=”120” />
 <Setter Property=”FontWeight” Value=”Bold” />
 </Style>
 <Style x:Key=”AccountSettingsTextBoxStyle” TargetType=”TextBox”>
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Margin” Value=”10,10,0,0” />
 <Setter Property=”Width” Value=”200” />
 </Style>
 <Style x:Key=”AccountSettingsPasswordBoxStyle” TargetType=”PasswordBox”>
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Margin” Value=”10,10,0,0” />
 <Setter Property=”Width” Value=”200” />
 </Style>
 <Style x:Key=”AccountSettingsButtonStyle” TargetType=”Button”>
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Margin” Value=”0,10” />
 </Style>
 </navigation:Page.Resources>

continues

534045c04.indd 173 3/14/10 2:19:37 PM

174 ❘ ChaPter 4 Welcome Home

 <StackPanel>
 <TextBlock Style=”{StaticResource AccountSettingsHeaderStyle}” />
 <Border Style=”{StaticResource AccountSettingsBorderStyle}”>
 <StackPanel x:Name=”AccountSettingsPanel”
Style=”{StaticResource AccountSettingsContainerPanelStyle}”>
 <StackPanel Style=”{StaticResource
AccountSettingsStackPanelStyle}”>
 <TextBlock Text=”Email Address:”
Style=”{StaticResource AccountSettingsTextStyle}” />
 <TextBox x:Name=”Email” Text=”{Binding
email_address}” Style=”{StaticResource AccountSettingsTextBoxStyle}” />
 </StackPanel>
 <StackPanel Style=”{StaticResource
AccountSettingsStackPanelStyle}”>
 <TextBlock Text=”Password:” Style=”{StaticResource
AccountSettingsTextStyle}” />
 <PasswordBox x:Name=”Password” Style=”{StaticResource
AccountSettingsPasswordBoxStyle}” />
 </StackPanel>
 <StackPanel Style=”{StaticResource
AccountSettingsStackPanelStyle}”>
 <TextBlock Text=”Confirm Password:”
Style=”{StaticResource AccountSettingsTextStyle}” />
 <PasswordBox x:Name=”ConfirmPassword”
Style=”{StaticResource AccountSettingsPasswordBoxStyle}” />
 </StackPanel>
 <StackPanel Style=”{StaticResource
AccountSettingsStackPanelStyle}”>
 <TextBlock Text=”Security Question:”
Style=”{StaticResource AccountSettingsTextStyle}” />
 <TextBox x:Name=”SecurityQuestion” Text=”{Binding
security_question}” Style=”{StaticResource AccountSettingsTextBoxStyle}” />
 </StackPanel>
 <StackPanel Style=”{StaticResource
AccountSettingsStackPanelStyle}”>
 <TextBlock Text=”Security Answer:”
Style=”{StaticResource AccountSettingsTextStyle}” />
 <PasswordBox x:Name=”SecurityAnswer”
Style=”{StaticResource AccountSettingsPasswordBoxStyle}” />
 </StackPanel>
 <Button Content=”Save Changes” x:Name=”SaveChanges”
Style=”{StaticResource AccountSettingsButtonStyle}” />
 </StackPanel>
 </Border>
 </StackPanel>
</navigation:Page>

Even though you won’t be using the DataForm control, you can still make use of data binding on
this page. Note how the e-mail and security question fields are bound to the email_address and
security_answer. By setting the DataContext property on the parent control, you will still have
two-way binding working on those two fields. You don’t want to bind to the password, confirm

liStiNg 4-10 (continued)

534045c04.indd 174 3/14/10 2:19:37 PM

Solution ❘ 175

password, or security answer fields and you will see why shortly. Even though you aren’t using the
DataForm control, you still have a nice data entry form for updating account settings with a mini-
mal amount of code. Figure 4-10 shows the account settings page.

FigUre 4-10

Database

No new database tables are necessary for the account settings. All of the settings that are being
modified reside in the users table defined in the previous chapter, so no further work needed here.

Data Access

In the previous chapter, you created a UserInformation LINQ to SQL class file that contained
all of the necessary fields from the users table. In the user interface, you saw that an additional
PasswordBox was used to capture the confirm_password property of the UserInformation object.
A confirm password field is used on many sites to ensure that when users make a password change,
they have really entered the new password correctly. If the confirm password field does not match
the password field, then the update won’t occur. Forcing the user to type the password twice like
this can help prevent any mistakes while typing the new password. There is nothing worse than
changing your password on a site and making a typo. Without a confirm password field to double-
check your entry, you could easily end up locked out of your account and be forced to contact the
site administrator.

534045c04.indd 175 3/14/10 2:19:38 PM

176 ❘ ChaPter 4 Welcome Home

You don’t want users of FitnessTrackerPlus to go through all of that hassle so you should provide the
confirm password field. A quick look at the users table shows that the confirm_password field does
not exist anywhere. You could add the field to the database, but again, you don’t want to store any
information that is really not necessary. The confirm_password field is really only used once for
client-side validation of the new password. LINQ to SQL generated the UserInformation class as a
partial class, so extending it to include this new property should not be a problem. You do, however,
have one problem with this approach. In Silverlight 2, when creating a “WCFSilverlight Enabled”
web service, you can easily create another partial class in a separate UserInformation.cs file. From
there, you could add the confirm_password property and decorate it with the DataMember anno-
tation. This is all that is needed to get WCF to serialize the new property to the Silverlight client.
Of course, if you required change notification, you would need to implement the PropertyChanged
event for the new property. In this implementation, the resulting code might look like the following:

public partial class UserInformation
{
 private string confirm_password_value;

 [DataMember]
 public string confirm_password
 {
 get { return confirm_password_value; }
 set
 {
 confirm_password_value = value;

 if (PropertyChanged != null)
 PropertyChanged(this, new
PropertyChangedEventArgs(“confirm_password”));
 }
 }
}3

Seems easy enough, right? Well, you aren’t using a WCF service in FitnessTrackerPlus. You are using the
WCF RIA Services framework, which unfortunately, does not work quite the same way. If you need to
add a property that should be serialized to the Silverlight client but is not part of the original database
schema you have a couple of choices. The first possibility is to utilize the new shared code feature of
the WCF RIA Services framework. In this scenario, you would add a new UserInformation partial
class to your ASP.NET project and call the file UserInformation.shared.cs. In here, you could add the
confirm_password property. Any classes, methods, or properties that exist in a shared.cs file will be
copied as is into the generated client-side code. Here is what UserInformation.shared.cs would look like.

using System.ComponentModel.DataAnnotations;
using System.Web.Ria.Data;
using FitnessTrackerPlus.Web.Data;

namespace FitnessTrackerPlus.Web.Data
{
 public partial class UserInformation
 {
 public string confirm_password { get; set; }
 }
}

534045c04.indd 176 3/14/10 2:19:38 PM

Solution ❘ 177

One major benefit of using the shared code method is that the confirm_password field would
be available on both the server as well as the client projects. However, you don’t really need the
confirm_password property at all on the server—let’s look at the alternate solution.

The alternate solution is to make use of the new computed properties feature of the WCF RIA
Services. Any property that you need to add to an existing entity class that does not have a corre-
sponding field in the database and is only needed at the Silverlight client layer can make use of this
feature. All you need to do is add the class file to the Silverlight project extending the entity you wish
to add the property to. This is very similar to the situation I just described with WCF except now
you are extending the entity class on the client. In order to get this working in FitnessTrackerPlus,
you first need to create a new directory in the Silverlight project called Computed. This folder will
store all entities that are extended for additional computed properties. Next, create a new partial
class called UserInformation and add the confirm_password property, as shown in the code that
follows.

namespace FitnessTrackerPlus.Web.Data
{
 public partial class UserInformation
 {
 public string confirm_password { get; set; }
 }
}

Code snippet UserInformation.cs located in the FitnessTrackerPlus project

That’s pretty much all there is to it. Now when you add the UserInformation instance to a
DataForm, you can set up the binding to the confirm_password property.

Business Logic

Now that you have the new confirm_password computed property, it’s time to look at how to validate
this property. The only validation rule for this is to ensure that the confirm_password matches the
password property. Because this property resides only on the client, you don’t have a corresponding
metadata file to add validation attributes to. Not to worry however—the data annotations that you
use in metadata files will work just fine in this extended class as well. The following code shows the
updated UserInformation class with the appropriate validation annotations:

using System.ComponentModel.DataAnnotations;

namespace FitnessTrackerPlus.Web.Data
{
 public partial class UserInformation
 {
 [Display(Name = “Confirm Password:”)]
 [CustomValidation(typeof(UserInformationValidation),
“ValidateConfirmPassword”)]
 public string confirm_password { get; set; }
 }

}

Code snippet UserInformation.cs located in the FitnessTrackerPlus project

534045c04.indd 177 3/14/10 2:19:38 PM

178 ❘ ChaPter 4 Welcome Home

As you can see in the previous code, rather than relying on one of the standard validation annota-
tions, you are instead making use of a [CustomValidation] annotation. Whenever you have
a validation rule that doesn’t match one of the validation annotations provided by WCF RIA
Services, you can always decorate a property with the [CustomValidation] annotation specifying
the type of validation class and static validation method to be called by the runtime when valida-
tion of the entity is performed. In this case, you are telling the framework to look for a class called
UserInformationValidation and use its ValidateConfirmPassword method in order to validate
the confirm_password property. Because this method is only used in relation to the computed prop-
erty, you can go ahead and add the code to the existing UserInformation.cs file. Listing 4-11 shows
the updated version of the UserInformation.cs file that includes both the computed property and its
custom validation class.

liStiNg 4-11: UserInformation.cs (located in the FitnessTrackerPlus project)

using System.ComponentModel.DataAnnotations;

namespace FitnessTrackerPlus.Web.Data
{
 public partial class UserInformation
 {
 [Display(Name = “Confirm Password:”)]
 [CustomValidation(typeof(UserInformationValidation),
“ValidateConfirmPassword”)]
 public string confirm_password { get; set; }
 }

 public class UserInformationValidation
 {
 public static ValidationResult ValidateConfirmPassword(string
confirm_password, ValidationContext context)
 {
 UserInformation current = context.ObjectInstance as
UserInformation;

 if (current.password != confirm_password)
 return new ValidationResult(“Confirm password and password
fields must be the same”);

 return null;
 }
 }
}

When it comes time to perform the actual custom validation logic you can use the supplied
ValidationContext to gain access to the instance of the entity being validated. From there, you
have access to all the properties including the confirm_password computed property value. With
this information, you can easily compare the password and confirm_password fields to see if they
match. If they don’t match, you just return a new ValidationResult with an appropriate error mes-
sage and that message is displayed to the user automatically if you make use of a DataForm. Because
you are using your own custom data entry form here, you need to take care of displaying the valida-
tion error on your own.

534045c04.indd 178 3/14/10 2:19:38 PM

Solution ❘ 179

User Interface Code Behind

The first item on your agenda for the code behind is to set up an event handler for the SaveChanges
button. In the following code, the SaveChanges_Click event handler method is being assigned in
the Loaded event for the Page.

Loaded += (s, e) =>
{
 SaveChanges.Click += new RoutedEventHandler(SaveChanges_Click);
};

Code snippet AccountSettings.xaml.cs located in the FitnessTrackerPlus project

Next on the list is making sure that the account settings for the currently logged-in user are bound
to the main StackPanel control that is hosting all the data entry controls. In the following code,
this binding is taking place when the page is navigated to by overriding the OnNavigatedTo event.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 AccountSettingsPanel.DataContext = Globals.CurrentUser;
}

Code snippet AccountSettings.xaml.cs located in the FitnessTrackerPlus project

The only other work left to do is implement the SaveChanges_Click method. In the following
code, all the data entry field values are collected and assigned to their respective properties in the
Globals.CurrentUser object. The validation rules are checked whenever the values of these prop-
erties are assigned. If any of these assignments should fail validation, a ValidationException
is thrown. If everything checks out, the UpdateUser method of the UserInformationService is
called to persist the new account settings to the database.

private void SaveChanges_Click(object sender, RoutedEventArgs e)
{
 try
 {
 Globals.CurrentUser.email_address = Email.Text;
 Globals.CurrentUser.security_question = SecurityQuestion.Text;

 if (!String.IsNullOrEmpty(Password.Password))
 Globals.CurrentUser.password = Password.Password;

 if (!String.IsNullOrEmpty(ConfirmPassword.Password))
 Globals.CurrentUser.confirm_password = ConfirmPassword.Password;

 if (!String.IsNullOrEmpty(SecurityAnswer.Password))
 Globals.CurrentUser.security_answer = SecurityAnswer.Password;

 context.UpdateUser(Globals.CurrentUser, (UpdateUserCallback) =>
 {
 Password.Password =”“;

534045c04.indd 179 3/14/10 2:19:39 PM

180 ❘ ChaPter 4 Welcome Home

 ConfirmPassword.Password =”“;
 SecurityAnswer.Password =”“;

 MessageBox.Show(“Your account settings have
been successfully updated”);

 }, null);
 }
 catch (ValidationException ex)
 {
 MessageBox.Show(ex.ValidationResult.ErrorMessage);
 }
}

Code snippet AccountSettings.xaml.cs located in the FitnessTrackerPlus project

theme Selection
Along with a user friendly home page, most sites these days offer several different themes to choose
from. In addition, the user’s selection is usually stored so that the preferred theme automatically loads
the next time the user logs back into the site. This section covers how theme selection will be imple-
mented in FitnessTrackerPlus. You will be creating a list of available themes and storing the selected
theme in the user profile using the AuthenticationService.

In previous versions of Silverlight, trying to switch themes dynamically was a chore and performance
was lackluster. With the addition of implicit styling support in Silverlight 4, you can easily switch the
theme at runtime. To get started adding theme selection to FitnessTrackerPlus, you will need to first
add the XAML files to the project. Start by creating a new Themes folder in the Silverlight project
and then navigate to the installation location for the Silverlight toolkit themes; this is commonly
C:\Program Files\Microsoft SDKs\Silverlight\v4.0\Toolkit\Nov09\
Themes. If you continue navigating to the XAML directory, you
will be able to add each of the available themes. Remember that
you could use the DLL versions of these themes but most likely
you will need to add styles for any custom controls that exist in
FitnessTrackerPlus, and rather than add several additional DLL proj-
ects to the solution it is somewhat easier to just add the XAML files
themselves so that you can directly make edits.

Once you have added the required XAML files to the project, you
need to make sure that you have set them as resource files, as shown
in Figure 4-11.

User Interface

The user interface for theme selection consists of a StackPanel that contains Border and Rectangle
controls that are filled with colors representing each of the available themes. The idea here is that the
user will have several theme colors from which to choose; clicking one of the Rectangle controls

FigUre 4-11

534045c04.indd 180 3/14/10 2:19:39 PM

Solution ❘ 181

will result in the overall site theme being changed. The Tag property is used to store the name of the
actual theme file being requested.

Because the design calls for this theme selection to be located in the banner area of the page, you
need to add it to the MainPage.xaml file. In fact, the theme selection area basically resides in the
same location as the login control. This means that you need to toggle the visibility of both depend-
ing on whether the user is logged in to the site or not. Listing 4-12 shows the updated version of
MainPage.xaml that includes the necessary controls required for theme selection. Notice how there
is a colored Rectangle control for each of the themes available in the Silverlight Toolkit:

liStiNg 4-12: MainPage.xaml (located in the FitnessTrackerPlus project)

<UserControl x:Class=”FitnessTrackerPlus.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:navigation=”clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Navigation”
 xmlns:toolkit=”clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Toolkit”
 xmlns:user_controls=”clr-namespace:FitnessTrackerPlus.Controls”>
 <UserControl.Resources>
 <Style x:Key=”BannerAreaStyle” TargetType=”toolkit:DockPanel”>
 <Setter Property=”Height” Value=”125” />
 <Setter Property=”LastChildFill” Value=”False” />
 <Setter Property=”VerticalAlignment” Value=”Top”/>
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Top” />
 </Style>
 <Style x:Key=”MainDockPanelStyle” TargetType=”toolkit:DockPanel”>
 <Setter Property=”LastChildFill” Value=”True” />
 </Style>
 <Style x:Key=”LogoBackgroundStyle” TargetType=”Border”>
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Left” />
 </Style>
 <Style x:Key=”LogoImageStyle” TargetType=”Image”>
 <Setter Property=”Source” Value=”/Images/logo.png” />
 <Setter Property=”Width” Value=”300” />
 <Setter Property=”Height” Value=”80” />
 <Setter Property=”Stretch” Value=”Fill” />
 <Setter Property=”VerticalAlignment” Value=”Top” />
 </Style>
 <Style x:Key=”LoginControlStyle” TargetType=”user_controls:Login”>
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Right” />
 </Style>
 <Style x:Key=”MainFrameAreaStyle” TargetType=”navigation:Frame”>
 <Setter Property=”Source” Value=”Home” />
 <Setter Property=”UriMapper” Value=”{StaticResource UriMap}” />
 <Setter Property=”HorizontalContentAlignment”
Value=”Stretch” />
 <Setter Property=”Margin” Value=”0,10” />
 </Style>
 <Style x:Key=”FooterAreaStyle” TargetType=”StackPanel”>

continues

534045c04.indd 181 3/14/10 2:19:39 PM

182 ❘ ChaPter 4 Welcome Home

 <Setter Property=”HorizontalAlignment” Value=”Center” />
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Bottom” />
 </Style>
 <Style x:Key=”FooterLinksAreaStyle” TargetType=”StackPanel”>
 <Setter Property=”Orientation” Value=”Horizontal” />
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 </Style>
 <Style x:Key=”FooterTextStyle” TargetType=”TextBlock”>
 <Setter Property=”FontSize” Value=”12” />
 </Style>
 <Style x:Key=”FooterLinksStyle” TargetType=”HyperlinkButton”>
 <Setter Property=”FontSize” Value=”12” />
 </Style>
 <Style x:Key=”CopyrightTextStyle” TargetType=”TextBlock”>
 <Setter Property=”Text”
Value=”FitnessTrackerPlus Copyright 2009–2010 All Rights Reserved” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 </Style>
 <Style x:Key=”ThemePanelStyle” TargetType=”StackPanel”>
 <Setter Property=”Orientation” Value=”Horizontal” />
 <Setter Property=”Visibility” Value=”Collapsed” />
 <Setter Property=”VerticalAlignment” Value=”Top” />
 <Setter Property=”Margin” Value=”0,20,10,0” />
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Right” />
 </Style>
 <Style x:Key=”ThemeBorderStyle” TargetType=”Border”>
 <Setter Property=”BorderBrush” Value=”#FF000000” />
 <Setter Property=”BorderThickness” Value=”2” />
 <Setter Property=”Width” Value=”30” />
 <Setter Property=”Height” Value=”30” />
 <Setter Property=”Padding” Value=”0” />
 <Setter Property=”Margin” Value=”5,0,0,0” />
 </Style>
 <Style x:Key=”ThemeSelectionStyle” TargetType=”Rectangle”>
 <Setter Property=”Width” Value=”30” />
 <Setter Property=”Height” Value=”30” />
 <Setter Property=”Cursor” Value=”Hand” />
 </Style>
 </UserControl.Resources>
 <ScrollViewer x:Name=”MainScroll”>
 <toolkit:DockPanel Style=”{StaticResource MainDockPanelStyle}”>
 <toolkit:DockPanel Style=”{StaticResource BannerAreaStyle}”>
 <Border Style=”{StaticResource LogoBackgroundStyle}”>
 <Image Style=”{StaticResource LogoImageStyle}” />
 </Border>
 <user_controls:Login x:Name=”LoginControl”
Style=”{StaticResource LoginControlStyle}” />
 <StackPanel x:Name=”ThemePanel” Style=”{StaticResource
ThemePanelStyle}”>
 <Border Style=”{StaticResource ThemeBorderStyle}”>
 <Rectangle Fill=”MintCream”

liStiNg 4-12 (continued)

534045c04.indd 182 3/14/10 2:19:39 PM

Solution ❘ 183

Style=”{StaticResource ThemeSelectionStyle}” Tag=”BubbleCreme” />
 </Border>
 <Border Style=”{StaticResource ThemeBorderStyle}”>
 <Rectangle Fill=”Black” Style=”{StaticResource
ThemeSelectionStyle}” Tag=”BureauBlack” />
 </Border>
 <Border Style=”{StaticResource ThemeBorderStyle}”>
 <Rectangle Fill=”Aqua” Style=”{StaticResource
ThemeSelectionStyle}” Tag=”BureauBlue” />
 </Border>
 <Border Style=”{StaticResource ThemeBorderStyle}”>
 <Rectangle Fill=”SlateGray”
Style=”{StaticResource ThemeSelectionStyle}” Tag=”ExpressionDark” />
 </Border>
 <Border Style=”{StaticResource ThemeBorderStyle}”>
 <Rectangle Fill=”White” Style=”{StaticResource
ThemeSelectionStyle}” Tag=”ExpressionLight” />
 </Border>
 <Border Style=”{StaticResource ThemeBorderStyle}”>
 <Rectangle Fill=”Orange” Style=”{StaticResource
ThemeSelectionStyle}” Tag=”RainierOrange” />
 </Border>
 <Border Style=”{StaticResource ThemeBorderStyle}”>
 <Rectangle Fill=”Purple” Style=”{StaticResource
ThemeSelectionStyle}” Tag=”RainierPurple” />
 </Border>
 <Border Style=”{StaticResource ThemeBorderStyle}”>
 <Rectangle Fill=”Blue” Style=”{StaticResource
ThemeSelectionStyle}” Tag=”ShinyBlue” />
 </Border>
 <Border Style=”{StaticResource ThemeBorderStyle}”>
 <Rectangle Fill=”Red” Style=”{StaticResource
ThemeSelectionStyle}” Tag=”ShinyRed” />
 </Border>
 <Border Style=”{StaticResource ThemeBorderStyle}”>
 <Rectangle Fill=”DodgerBlue”
Style=”{StaticResource ThemeSelectionStyle}” Tag=”TwilightBlue” />
 </Border>
 <Border Style=”{StaticResource ThemeBorderStyle}”>
 <Rectangle Fill=”CornflowerBlue”
Style=”{StaticResource ThemeSelectionStyle}” Tag=”WhistlerBlue” />
 </Border>
 </StackPanel>
 </toolkit:DockPanel>
 <StackPanel Style=”{StaticResource FooterAreaStyle}”>
 <StackPanel Style=”{StaticResource FooterLinksAreaStyle}”>
 <HyperlinkButton x:Name=”HomeLink” NavigateUri=”Home”
TargetName=”MainSiteFrame” Content=”Home” Style=”{StaticResource
FooterLinksStyle}” />
 <TextBlock Text=”|” Style=”{StaticResource
FooterTextStyle}” />
 <HyperlinkButton x:Name=”SignupLink”
NavigateUri=”Signup” TargetName=”MainSiteFrame” Content=”Signup”

continues

534045c04.indd 183 3/14/10 2:19:40 PM

184 ❘ ChaPter 4 Welcome Home

Style=”{StaticResource FooterLinksStyle}” />
 <TextBlock Text=”|” Style=”{StaticResource
FooterTextStyle}” />
 <HyperlinkButton x:Name=”PrivacyLink”
NavigateUri=”Privacy” TargetName=”MainSiteFrame” Content=”Privacy Policy”
Style=”{StaticResource FooterLinksStyle}” />
 <TextBlock Text=”|” Style=”{StaticResource
FooterTextStyle}” />
 <HyperlinkButton x:Name=”TermsLink”
NavigateUri=”Terms” TargetName=”MainSiteFrame” Content=”Terms of Service”
Style=”{StaticResource FooterLinksStyle}” />
 <TextBlock Text=”|” Style=”{StaticResource
FooterTextStyle}” />
 <HyperlinkButton x:Name=”AboutLink”
NavigateUri=”About” TargetName=”MainSiteFrame” Content=”About”
Style=”{StaticResource FooterLinksStyle}” />
 <TextBlock Text=”|” Style=”{StaticResource
FooterTextStyle}” />
 <HyperlinkButton x:Name=”ContactLink”
NavigateUri=”Contact” TargetName=”MainSiteFrame” Content=”Contact”
Style=”{StaticResource FooterLinksStyle}” />
 </StackPanel>
 <TextBlock Style=”{StaticResource CopyrightTextStyle}” />
 </StackPanel>
 <navigation:Frame x:Name=”MainSiteFrame” Style=”{StaticResource
MainFrameAreaStyle}” />
 </toolkit:DockPanel>
 </ScrollViewer>
</UserControl>

Database, Data Access, Business Logic

No additional database or data access code is required to make theme selection work. For business logic,
you will be making use of the AuthenticationService in order to modify and save the CurrentTheme
property of the user profile object. You won’t need to write any additional code, however, as everything
you need was created in the previous chapter.

User Interface Code Behind

In the code behind you need to take care of switching the currently active theme when the user clicks
one of the Rectangle controls. Although there is no Click event available, you can just as easily
do this by adding an event handler to the MouseLeftButtonUp event. Because all these Rectangle
controls will use the same event handler, you can simplify the hookup of these events by iterating
through the child controls of the StackPanel hosting the Rectangle controls. As you iterate through
the children, you will gain access to the Border control that is the parent for the Rectangle. From
this point, you simply cast the Child property of the Border control to a Rectangle and assign the
event handler to the MouseLeftButtonUp event as shown in the following code.

liStiNg 4-12 (continued)

534045c04.indd 184 3/14/10 2:19:40 PM

Solution ❘ 185

foreach (UIElement element in ThemePanel.Children)
 ((element as Border).Child as Rectangle).MouseLeftButtonUp += new
MouseButtonEventHandler(ThemeSelection_MouseLeftButtonUp);

Code snippet MainPage.xaml.cs located in the FitnessTrackerPlus project

Now, once you have registered the event listeners for all of the theme selection rectangles, you need
to implement the MouseLeftButtonUp method. In the following code, you will first extract the
theme value that was selected from the Tag property of the Rectangle control that was clicked.
Then you want to save the value in the current user’s Profile object. Finally, when the asyn-
chronous SaveUser call completes you need to actually switch out the current theme. Earlier in
Chapter 2, I showed you how to do this with the DLL versions of the Toolkit themes. Although this
method works, you would be much better off if you could switch the current theme without remov-
ing and adding controls to the visual tree. In the following code, the current theme is switched using
the MergedDictionaries feature of Silverlight. Because you can easily add and remove items from
this collection at any time, you basically clear the collection, build a new ResourceDictionary
using the raw XAML files for the selected theme, and add that new ResourceDictionary object to
the MergedDictionaries collection. Implicit styling will take care of the rest by ensuring that all
the controls in the application are styled according to the XAML in the new MergedDictionaries
collection you created.

private void ThemeSelection_MouseLeftButtonUp(object sender,
MouseButtonEventArgs e)
{
 // Switch the current theme and store in the user profile

 WebContext.Current.User.CurrentTheme = (sender as Rectangle).Tag.ToString();
 WebContext.Current.Authentication.SaveUser(false);

 SetTheme(WebContext.Current.User.CurrentTheme);
}

private void SetTheme(string theme)
{
 this.Resources.MergedDictionaries.Clear();

 ResourceDictionary themeResource = new ResourceDictionary();
 themeResource.Source = new
Uri(String.Format(“/FitnessTrackerPlus;component/Themes/
System.Windows.Controls.Theming.{0}.xaml”, theme), UriKind.RelativeOrAbsolute);

 this.Resources.MergedDictionaries.Add(themeResource);
}

Code snippet MainPage.xaml.cs located in the FitnessTrackerPlus project

Of course, if you already have items in the MergedDictionaries collection, you can simply clear the
collection. In that case, you must ensure that you only remove the existing theme ResourceDictionary
object, if one exists.

534045c04.indd 185 3/14/10 2:19:40 PM

186 ❘ ChaPter 4 Welcome Home

One last thing that you will need to do is to ensure that the Background property of the ScrollViewer
is set to a color that works well with the theme that was selected. By default, most of the themes do
not have the Background property set for ScrollViewer controls. You should go through each of
the theme files and find the ScrollViewer style template and add the appropriate Background color.
The following code shows the ScrollViewer style definition from the BubbleCreme theme with the
Background property added.

 <Style TargetType=”ScrollViewer”>
 <Setter Property=”BorderThickness” Value=”1.5,1.5,.75,.75” />
 <Setter Property=”Padding” Value=”1” />
 <Setter Property=”Background” Value=”Cornsilk” />
 <Setter Property=”BorderBrush”>
 <Setter.Value>
 <LinearGradientBrush EndPoint=”0.5,1.5” StartPoint=”0.5,0”>
 <GradientStop Color=”{StaticResource DarkColor}” />
 <GradientStop Color=”{StaticResource LightColor}” Offset=”1” />
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 <Setter Property=”HorizontalScrollBarVisibility” Value=”Auto” />
 <Setter Property=”VerticalScrollBarVisibility” Value=”Auto” />
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”ScrollViewer”>
 <Border x:Name=”Root” BorderBrush=”{TemplateBinding BorderBrush}”
BorderThickness=”{TemplateBinding BorderThickness}” CornerRadius=”4”>
 <Grid Background=”#FFF9F9E6>
 <Grid.RowDefinitions>
 <RowDefinition Height=”*” />
 <RowDefinition Height=”Auto” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*” />
 <ColumnDefinition Width=”Auto” />
 </Grid.ColumnDefinitions>

Code snippet System.Windows.Controls.BubbleCreme.xaml located in the FitnessTrackerPlus project

You will need to make the change to the Background property in every theme file. It may seem
impossible that you’re creating a theme engine with this small amount of code, but thanks to the
new Implicit Styling support in Silverlight 4 combined with the pre-built themes available in the
Silverlight Toolkit supporting dynamic theme selection is easier than ever.

Site announcements
At this point, you have just about everything you need for a working user home page. Theme selec-
tion is working, site navigation is in place, and your users can even update their account settings. The
only thing left to work on for this chapter is to add some functionality to that Dashboard control to
provide your users with important site announcements. The design called for a site announcements
control that would provide a list of hyperlinks, which, when clicked, displays the announcement text
in a modal ChildWindow.

534045c04.indd 186 3/14/10 2:19:41 PM

Solution ❘ 187

User Interface

For the user interface of the site announcements control you will need to make use of a custom-
ized ListBox control. Customizing the ListBox control involves overriding both the ItemsPanel
and ItemContainerStyle. The ItemsPanel will consist of a vertically oriented StackPanel.
This will be the main container holding all of the ListBox items. The ItemContainerStyle will
consist of a horizontal StackPanel that contains a TextBlock for the announcement date, and a
HyperlinkButton that contains the announcement title text. Listing 4-13 shows the XAML code
required for the Announcements control.

liStiNg 4-13: Announcements.xaml (located in the FitnessTrackerPlus project)

<UserControl x:Class=”FitnessTrackerPlus.Views.Dashboard.Announcements”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:controls=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls”
 xmlns:converters=”clr-namespace:FitnessTrackerPlus.Converters”>
 <UserControl.Resources>
 <converters:AnnouncementDateConverter
x:Key=”AnnouncementDateConverter” />
 <Style x:Key=”AnnouncementDateStyle” TargetType=”TextBlock”>
 <Setter Property=”Margin” Value=”10,0,0,0” />
 </Style>
 <Style x:Key=”AnnouncementLinkStyle” TargetType=”HyperlinkButton”>
 <Setter Property=”VerticalAlignment” Value=”Top” />
 <Setter Property=”Margin” Value=”10,0,0,0” />
 </Style>
 <Style x:Key=”AnnouncementListStyle” TargetType=”ListBox”>
 <Setter Property=”BorderThickness” Value=”0” />
 <Setter Property=”Background” Value=”Transparent” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”MinHeight” Value=”150” />
 <Setter Property=”ScrollViewer.HorizontalScrollBarVisibility”
Value=”Hidden” />
 </Style>
 <Style x:Key=”AnnouncementHeaderTextStyle” BasedOn=”{StaticResource
SummaryHeaderTextStyle}” TargetType=”TextBlock”>
 <Setter Property=”Text” Value=”Announcements” />
 </Style>
 <Style x:Key=”AnnouncementListItemsPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”Orientation” Value=”Vertical” />
 </Style>
 <Style x:Key=”AnnouncementListItemPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”Orientation” Value=”Horizontal” />
 </Style>
 </UserControl.Resources>
 <Border Style=”{StaticResource SummaryBorderStyle}”>
 <StackPanel Style=”{StaticResource SummaryStackPanelStyle}”>
 <Border Style=”{StaticResource SummaryHeaderBorderStyle}”>

continues

534045c04.indd 187 3/14/10 2:19:41 PM

188 ❘ ChaPter 4 Welcome Home

 <TextBlock Style=”{StaticResource
AnnouncementHeaderTextStyle}” />
 </Border>
 <ListBox x:Name=”AnnouncementsList” Style=”{StaticResource
AnnouncementListStyle}”>
 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel Style=”{StaticResource
AnnouncementListItemsPanelStyle}” />
 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
 <ListBox.ItemContainerStyle>
 <Style TargetType=”ListBoxItem”>
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”ListBoxItem”>
 <StackPanel
Style=”{StaticResource AnnouncementListItemPanelStyle}”>
 <TextBlock
Style=”{StaticResource AnnouncementDateStyle}” Text=”{Binding
Path=created_date,
StringFormat=’MM-dd-yy’}” />
 <HyperlinkButton
Style=”{StaticResource AnnouncementLinkStyle}” Content=”{Binding Path=title}”
Click=”Announcement_Click” />
 </StackPanel>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </ListBox.ItemContainerStyle>
 </ListBox>
 </StackPanel>
 </Border>
</UserControl>

Under normal circumstances, I almost always prefer to hook up event handlers in the code behind
file. I don’t like putting event handler declarations in XAML; I’m firmly in the camp that believes
design elements should only reside in XAML files. In the ItemContainerStyle for the ListBox,
however, you are forced to break this rule by hooking up the event handler for the HyperlinkButton
directly in the XAML file. Another element of the code to note is its use of the new StringFormat
attribute on the TextBlock control. This new attribute was added to Silverlight 4 to replace the
cumbersome creation of a special Converter class just to format the text that needs to be dis-
played in a data bound control. For example, in the previous XAML code you wanted to show the
short date format for the announcement date. In previous versions of Silverlight this would have
required you to create a new class to implement the IValueConverter interface just to format the
date. Now, you simply make use of the StringFormat attribute to accomplish the same thing, but
it’s much easier.

liStiNg 4-13 (continued)

534045c04.indd 188 3/14/10 2:19:41 PM

Solution ❘ 189

Database

For the site announcements feature, you will need to create a new database
table as outlined in the design. There will be no relationships to other tables
in the database, so it is a pretty simple table design. Figure 4-12 shows the
database diagram for the announcements table you need to generate.

Data Access

For data access, you need to add a new LINQ to SQL class file to the project.
Next, you must select the announcements table when creating the class and
then call the file Announcements.dbml. The only table that you need to drag
over is the announcements table. Once again, LINQ to SQL performs the
majority of the work. In keeping with the LINQ to SQL naming conventions
that you have been following for this project, you also need to rename the
class to Announcement. Figure 4-13 shows the LINQ to SQL classes design.

Business Logic

The site announcements feature requires some
additional business logic in order to provide the
Silverlight client with the ability to retrieve site
announcements. For this, you need to add a new
domain service to the project and call it
AnnouncementService. In the service creation
wizard, as shown in Figure 4-14, be sure to select
AnnouncementsDataContext, and select the Enable
client access and Generate associated classes for
metadata options. You won’t be editing announce-
ments in this chapter, but by enabling this option you
won’t have to worry about going back and adding
the functionality later on. For now, you can manu-
ally create site announcements by adding entries to
the announcements table using SQL Server Express
Management Studio.

Once the wizard creates the AnnouncementService,
you will need to modify only the GetAnnouncements
method for now. As you can see in the following code,
this method has been modified to return only announce-
ments with a created_date within the last 30 days.

public IQueryable<Announcement> GetAnnouncements()
{
 // Only return announcements from the last thirty days

 return this.Context.Announcements.Where(e => e.created_date.Date <=
DateTime.Now.Date && e.created_date.Date >= DateTime.Now.Date.Subtract(new
TimeSpan(30, 0, 0, 0)));
}

Code snippet AnnouncementService.cs located in the FitnessTrackerPlus project

FigUre 4-12

FigUre 4-13

FigUre 4-14

534045c04.indd 189 3/14/10 2:19:41 PM

190 ❘ ChaPter 4 Welcome Home

User Interface Code Behind

The first thing to work on in the code behind file is to load the custom ListBox with the announce-
ments. This should be done in the Loaded event handler for the Page by making use of the
AnnouncementContext object. Remember that loading data from the AnnouncementContext is an
asynchronous process so you should set the Loaded event handler before actually making the call to
load the data, as shown in the following code.

Loaded += (s, e) =>
{
 AnnouncementsList.ItemsSource = context.Announcements;
 LoadOperation<Announcement> operation =
context.Load<Announcement>(context.GetAnnouncementsQuery());
};

Code snippet Announcements.xaml.cs located in the FitnessTrackerPlus project

Next, you need to handle the display of any announcements. What you want to happen is that when
the HyperlinkButton containing the announcement title is clicked, a new ChildWindow control is
created and displayed with its Content property set to the content property of the announcement
object.

The ChildWindow control has a Title property that can accept any object so you are not just
stuck with a generic text property for this. You want the announcement title to stand out so you
can create a new bold TextBlock and set the Title property to use the TextBlock when display-
ing the announcement title. In the following code, the Announcement object is extracted from the
DataContext property of the HyperlinkButton that was clicked. Next, a TextBlock control is
created and formatted to contain the actual Announcement content. Finally, the Content property
of the ChildWindow control is set to the TextBlock and the Show method is called to actually dis-
play the modal ChildWindow. The ChildWindow control contains its own Close icon so you won’t
need to add any code to take care of closing the window when the user has finished reading the
announcement.

private void Announcement_Click(object sender, RoutedEventArgs e)
{
 Announcement announcement = ((sender as HyperlinkButton).DataContext) as
Announcement;
 ChildWindow window = new ChildWindow();
 TextBlock announcementText = new TextBlock();

 if (announcement != null)
 {
 announcementText.MaxWidth = 400;
 announcementText.TextWrapping = TextWrapping.Wrap;
 announcementText.Text = announcement.content;
 announcementText.Margin = new Thickness(0, 10, 0, 10);

 TextBlock title = new TextBlock();
 title.FontWeight = FontWeights.Bold;

534045c04.indd 190 3/14/10 2:19:42 PM

Summary ❘ 191

 title.Text = “Important Site Announcement”;
 window.Title = title;
 window.Content = announcementText;
 window.Show();
 }
}

Fitness Summaries
The final requirement for this chapter was to fill the Dashboard control with daily summary controls
that would display food, exercise, and measurement summaries. It’s a little bit difficult to provide
these summaries when you can’t even log any foods, exercises, or measurements yet. At this point,
you only need to worry about creating placeholders for these controls. You already have a spot for
each of these on the Dashboard control. Now you simply need to create the following UserControls:

FoodSummary➤➤

ExerciseSummary➤➤

MeasurementSummary➤➤

For organization, you should place them all under the Views/Dashboard path in the Silverlight proj-
ect. With that complete, you can add instances of these controls in the Dashboard.xaml. In case you
missed the declarations earlier in the chapter, here is the code again:

<fitnesstrackerplus:Announcements x:Name=”Announcements”
 Style=”{StaticResource SummaryControlStyle}” Grid.Row=”1” Grid.Column=”0” />
<fitnesstrackerplus:MeasurementSummary x:Name=”MeasurementSummary”
 Style=”{StaticResource SummaryControlStyle}” Grid.Row=”1” Grid.Column=”1” />
<fitnesstrackerplus:FoodSummary x:Name=”FoodSummary”
 Style=”{StaticResource SummaryControlStyle}” Grid.Row=”2” Grid.Column=”0” />
<fitnesstrackerplus:ExerciseSummary x:Name=”ExerciseSummary”
 Style=”{StaticResource SummaryControlStyle}” Grid.Row=”2” Grid.Column=”1” />

Code snippet Dashboard.xaml located in the FitnessTrackerPlus project

That is really all you have to worry about for now with regards to the fitness summary controls.

SUmmary

Well, that was a lot of information to digest. At this point, you have a fully working user home page
complete with site announcements, navigation, account settings, and theme selection. Not too long
now and FitnessTrackerPlus will really start to look like a fully functional site. With that, take a
quick break, brew some coffee, and get ready for data entry. The next chapter is going to take some
time to get through, but by the end you will have a fully operational food log page where you can
add, edit, update, and delete food log entries.

534045c04.indd 191 3/14/10 2:19:42 PM

534045c04.indd 192 3/14/10 2:19:42 PM

One More Slice Can’t Hurt
Creating the Food Log Page

Now that you have a working user registration and login system, it’s time to start thinking
about adding some of the main application features. This chapter is the first of three that will
cover the various data entry aspects of the application. You’ll really begin to see how the new
WCF RIA Services Framework greatly enhances the developer experience when writing data
entry applications. This chapter focuses on creating the nutrition log page. You will see how
easy it is to create rich data entry forms for your users as well as how to take advantage of the
powerful data binding functionality built in to the existing Silverlight data controls such as
the DataGrid.

The fun doesn’t stop there, however; you will also see how to make use of new Silverlight Toolkit
controls such as the AutoCompleteBox and GlobalCalendar. The new GlobalCalendar control
is particularly exciting in that it provides you with a mechanism to customize the style of various
calendar days, a feature missing from the standard Calendar control. This may not seem very
important now but you will soon see how this is a critical piece of the food log page, and it is only
made possible by making use of this new enhancement.

Problem

It’s been established that the bulk of the work required for this site will be geared around data
entry. One of the biggest problems with any site that focuses on data entry is creating an inter-
face that does not frustrate users and is conducive to getting the work done quickly. The data
entry process must be painless to users or they will quickly leave the site and find another that
is. Users of FitnessTrackerPlus are expected to come to the site on a daily basis to enter foods,
exercises, and measurements. It is entirely possible that users will hit the site multiple times per
day to perform the data entry, so they need to be able to achieve this quickly and efficiently. In
the case of food entry, the site is providing users with an extensive database of existing foods
and needs to provide the users with an efficient way to search that database.

5

534045c05.indd 193 3/13/10 4:51:57 PM

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

194 ❘ ChaPter 5 One MOre Slice can’t Hurt

It is typical of many sites in this situation to provide a basic search box with pages upon pages of
results that closely match the query term. Although this type of search mechanism would be suffi-
cient for most sites, for FitnessTrackerPlus you need something better and more user-friendly. Users
may want to add many different foods to their journal each day and requiring them to page through
several pages of matching food results is not an efficient use of their time. Remember that it’s not
the actual data entry that is interesting to the user; it is the ability to view reports, daily totals, and
charts that gives the user value in this application. This problem will need some kind of resolution that
combines both efficient searching of the database along with the ability to quickly add the matching
result to the journal without paging through large result sets.

Despite providing a database of foods for the user to choose from, it is almost impossible to collect
nutrition data for every possible food in existence. Because you can’t know every possible food that
users will want to include in their journal, you will need to provide the options for users to cre-
ate custom foods. Of course, once these custom entries are created and stored in the database they
should also be displayed along with existing database entries when users search for foods in the
future.

The data entry process for the food log page will consist of users entering the first few characters
of a food into a search box. As the users type, the code will query the database to find any relevant
food matches. At some point, the query will return and the users will see a list of possible foods to
select from. After the user makes a selection, a new entry will be added to the food log. In order to
make the data entry efficient, you won’t be requiring users to add additional information, such as
serving size consumed. Instead, new food log entries will be created with default serving size infor-
mation, and users can easily modify the default information after quickly adding all of their foods.
Of course, if the users cannot find a sufficient match, then they will always have the option to create
a custom food, which will be stored in the database and become available for future queries.

The final problem that you need to work out is how to allow users to access past and future food
log entries. By adding the GlobalCalendar control to the log page, you should be able to capture
any date selection event and reload all of the food log data for the selected date. By doing this, your
users will be able to not only modify previous food log entries but also plan ahead and add entries
to future days.

Design

For the design section in this chapter, I want to introduce you to another tool that can be helpful
in gathering requirements—user stories. I have seen many instances of software being designed in
which a list of requirements was drawn up without any attention being paid to how users would
actually use the software. User stories are not a new invention—you may have heard of them being
called use cases as well. This basically entails writing up small paragraphs that outline how a partic-
ular user or group of users will utilize a feature of the site. Typically, you pick a feature and write up
several scenarios or stories that mimic the various actions that the user will perform. A well thought
out story can really give you insight into what actions users might look to perform on the site and
even suggest features that you may not have originally planned on but now seem crucial to ensuring
the task outline in the story can be achieved.

534045c05.indd 194 3/13/10 4:51:57 PM

Design ❘ 195

The food, exercise, and measurement log pages are perhaps the most important pages in the
FitnessTrackerPlus application, and the correct design will be crucial to ensuring that the user expe-
rience on the site is rewarding. This is not to say that you can’t upgrade the site and add features in
future releases. In fact, you will always be adding features and enhancements to stay one step ahead
of your competition. Nonetheless you want to make sure that you capture enough requirements in
this first pass to ensure that the users buy in to what you are offering and that all of the features
they would expect to see on these pages are, in fact, available.

User stories
Writing user stories can really help you to get a better understanding of what users may do while
using the features of your site. All too often, you may think you have all of the requirements down
only to find out that you left out an important user scenario. You don’t necessarily have to beat this
thing to death by writing hundreds of user stories but by putting yourself in the shoes of a few users,
you most likely will notice things that may have been left out of the initial design. With that said
let’s take a look at a user story that might cover some of the requirements for the food log.

Counting Calories with FitnessTrackerPlusUser story

Jan must finally give in and go on that diet she has been planning, otherwise all of the high school
reunion nightmares will come true for sure. She quickly jumps on the FitnessTrackerPlus site that her
friend recommended. Although she is extremely skeptical that she will find the site easy and, most
important, fast, she decides to register and give it a try.

Once logged into the site, she notices the menu item for the daily food log. She is immediately presented
with a simple interface consisting of a search box and a couple of lists for recent and custom foods. Not
terribly enthusiastic about the prospects of wading through pages of food listings to find the one that
matches she decides to enter the name of the yogurt she ate this morning for breakfast. To her surprise
a list of yogurts starts to appear as she types. This seems promising so she continues to type until the
best match appears.

This seems way too easy so she clicks the food in the list half expecting to be presented with another
list of search results. Instead, the food is quickly added to a table just below the data entry area and the
screen is immediately ready for another entry. After adding all of the foods, she realizes that not only
are the foods added in an easy-to-read tabular form, but the table has calculated daily totals for the
most important nutrients that she wants to keep track of.

Despite all of this working out so great for her, she still thinks there must be a catch. Although every
food she has entered seemed to show up in the search result list without forcing her to wade through
pages of results, she was sure the latest breakfast cereal she was planning on purchasing would not
show up in the list. It just seems impossible that this site could have a database of every single food ever
sold. She decides to give it a try and starts to type in the name of the new cereal. To her dismay nothing
appears in the search results. Now it seems as though this site is only going to work for her if she eats
foods from the database provided on the site.

Before giving up, however, a dejected Jan sees a button for creating a new custom food. She clicks the
button and is presented with a modal screen allowing her to enter all of the details of this new cereal.

534045c05.indd 195 3/13/10 4:51:57 PM

196 ❘ ChaPter 5 One MOre Slice can’t Hurt

She quickly grabs the box and enters all of the various nutrition facts from the label. In no time, the
custom food is added to the table and even appears to be available the next day when she logs in.
FitnessTrackerPlus may be the solution she was looking for after all.

requirements
After taking the time to write a solid user story for the food log, you should now have a pretty good
idea of what is required. Let’s take a look at the complete list of requirements extracted from the
previous user story:

Users should be able to utilize an assisted “auto-suggest” style search box when searching ➤➤

through existing foods in the database.

Users should be able to view lists of foods in a tabular format.➤➤

Users should be able to create, read, update, and delete any food log entries.➤➤

Users should be able to create custom foods if they cannot find an appropriate matching food ➤➤

in the database.

Users will need the ability to view past, present, and future log entries.➤➤

Food log
The first page you’ll add to the site is the daily food log. The primary goal of this page is to give users
an easy data entry screen for logging foods. Users of the site may not always have exercises or measure-
ments to track on any given day but, for the most part, they all eat something during the course of
the day. For this reason, the food log is, perhaps, the most important of the three log pages. It also
happens to be the most difficult to implement for several reasons. The first issue is how to make
use of the existing database of foods to assist users in their daily food entry. The food database can
contain thousands of different foods. Although many sites simply provide a search box and pages
of search results, that type of scenario is a nightmare for your everyday users. This sort of solution
might have been perfectly acceptable about five or six years ago, but today, with AJAX technology
and, of course, the new version of the Silverlight Toolkit, you can do a much better job.

Another issue you need to work out is how to display the food log entries. Choices range from a
simple ListBox to even a customized DataGrid-based solution. Finally, because it’s unreasonable to
expect the FitnessTrackerPlus database to have nutrition facts for every food ever created, you need
a mechanism to allow users to create custom foods. These custom foods will need to be stored in the
database for future use and should also be included in the search results.

User Interface

In order to satisfy the requirements for the food log page, the user interface will need several impor-
tant components. The design calls for a very simple data entry interface for adding new food log
entries. You want to allow users to search for foods from the database, but you don’t want them to
have to page through a large set of results. The new Silverlight AutoCompleteBox control looks like

534045c05.indd 196 3/13/10 4:51:57 PM

Design ❘ 197

it might be able to provide you with what you are looking for. By making use of this control, you
will be able to auto-suggest entries from the default database of foods as the user is typing.

You also need a mechanism for users to create their own custom foods, so a button that displays a
modal food creation window will do the trick here. That will get you to the point where you can
create new food log entries and custom foods, but where will you actually place the new entries on
the screen? Well, because the design calls for a table-like structure for the presentation of log entries,
you should be able to make use of the DataGrid control.

There is one more thing that you need to consider for the food log page, however—providing users
with the ability to view past and future entries. Although Silverlight has a great Calendar control
built in to the runtime, you know now that it has no provision to change the style of individual
calendar days. Instead, you will use the new GlobalCalendar control from the Silverlight Toolkit,
which provides everything the Calendar does but additionally the ability to customize the appear-
ance of individual calendar days, which, as you will see later on in the chapter, is an important fea-
ture. Figure 5-1 shows an outline of the controls needed for this page.

New Custom FoodFood Search Box

Food Log Entries

Calendar

FigUre 5-1

Another thing that you need to consider with the user interface is that users need some way to update
the food log entries after they have been created. This particular interface is streamlined so that
users can quickly add their foods without worrying about how many servings they consumed for
the given food right away. Basically, the goal is to get users to quickly enter all of the foods and then
go back and update serving information. This pattern accomplishes two things:

It allows users who may not necessarily care about serving information to quickly log their ➤➤

foods and move on.

It gives the other users who want more control the ability to modify the entries after they ➤➤

have already been added to the DataGrid.

Now back to the original question of how you are going to provide users with update and delete
capabilities for food log entries. The answer lies in the DataGrid itself. There have been many
improvements to this control in the latest version of Silverlight, and while you may have had

534045c05.indd 197 3/13/10 4:51:58 PM

198 ❘ ChaPter 5 One MOre Slice can’t Hurt

difficulties with things such as in-place row editing in previous editions of Silverlight, you won’t
have those problems anymore. You’ll also see how to make the data entry process more like a desk-
top application by taking advantage of the new right-click menu support in Silverlight 4. In addition
to the in-place editing capabilities of the DataGrid control, you will develop a right-click menu that
allows the users to delete any selected food log entries.

The final aspect of the user interface you need to consider is how you are going to allow users to add
custom foods. The design sketch included a button that users can click in order to create a new cus-
tom food. You should plan on displaying a modal ChildWindow containing a DataForm where users
can enter the custom food details. After the user finishes creating the custom food, you should then
create a new food log entry using the custom food. Because the custom food is stored in the data-
base, users will see the custom food in the list of results the next time they search for a food using
that food name.

Database

The food log page will require several new database tables to be created. You will need a normalized
table structure that can hold both foods and food log entries. The first table required will hold all of
the food information and nutrition facts. The default database that I have provided contains hundreds
of foods already populated in this table but any custom foods that users create will need their own
entry in this table. Table 5-1 shows the schema definition for the foods table.

table 5-1: foods

ColUmn name tyPe DesCriPtion

id int Unique identity field for food.

name varchar(200) Name of food.

user_id int ID of user associated with food. Default foods will always be

associated with admin user or user_id = 1.

serving_size varchar(200) Name of serving size for food.

calories float Total calories in food.

protein float Total protein content in food.

carbohydrate float Total carbohydrate content in food.

fat float Total fat content in food.

In addition to the foods table you also will need to create the food_logs table. This table is responsible
for holding information associated with each entry that is made in the user’s food log. Here you will
record the date, user, and consumed food along with the number of servings. Table 5-2 shows the
schema definition for this table.

534045c05.indd 198 3/13/10 4:51:58 PM

Design ❘ 199

table 5-2: food_logs

ColUmn name tyPe DesCriPtion

id int Unique identity field for food log entry

servings float Total number of servings for this entry

entry_date datetime Date and time of entry

food_id int ID of food associated with this entry

user_id int ID of user associated with this entry

Data Access

The data access classes for the food log page will consists of LINQ to SQL classes that have a direct
1:1 mapping between the database tables and the generated classes. You should expect to have one
new LINQ to SQL class file containing classes for each of the foods and food_logs tables.

Business Logic

The business logic required for the food log page will consist of a single DomainService class with
an associated metadata file. This DomainService will provide all of the necessary methods to cre-
ate, update, read, and delete food log entries, and foods. In addition to the default methods that the
DomainService wizard generates you need methods for the following operations:

A query method that returns all custom foods for the given user ID.➤➤

A query method that returns all food log entries for given user ID and date.➤➤

A method to create new custom foods.➤➤

A query method to search the food database using specified text and limiting results to a ➤➤

maximum number.

User Interface Code Behind

Although you have a relatively simple user interface design, you won’t necessarily have a simple code
behind implementation. In fact, over the last few years, one development paradox is that to make
the user interface more user-friendly and simple, you often need a more advanced behind-the-scenes
implementation.

A few years ago, it may have been acceptable to just throw buttons all over the user interface for every
possible action that the user may attempt. Lately, however, with the proliferation of iPhones and other
mobile devices, users are seeing a rapidly decreasing number of user interface controls and an increas-
ing number of richer feature sets. For the user, this is a good thing as for far too long interfaces were
cluttered and difficult to learn. Luckily, some of the new controls in Silverlight and the Silverlight
Toolkit provide you with enough leverage to keep the interface clean and yet still allow your code

534045c05.indd 199 3/13/10 4:51:58 PM

200 ❘ ChaPter 5 One MOre Slice can’t Hurt

behind pages to contain complex logic to help ensure that you aren’t losing any capabilities. The
food log page user interface will consist of an AutoCompleteBox control for searching the food data-
base, as well as a DataGrid to present the food log entries that have been made. You should expect
to have an event handler for the AutoCompleteBox that will create a new food log entry when the user
makes a selection from the list of search results. The DataGrid will also have several events that you
will need to implement in order to handle the in-place editing of food log entries.

In addition to in-place editing, you also want to be able to handle the deletion of entries from the
DataGrid. As described in the user interface design, you won’t have the typical delete button per
row that you may have seen in some of the DataGrid examples on the Web. Instead, each row is
going to have a CheckBox and there will be a button below the DataGrid that users can click to
delete all of the selected entries. Alternatively, you will also provide users with a right-click context
menu from which they can also delete any selected entries in the DataGrid.

Finally, because you are allowing users access to past and future food log entries, you will need to
handle the GlobalCalendarSelectedDateChanged event and refresh the DataGrid with entries
belonging to the date that was selected by the user. In order to keep the exercise and measurement
log pages in sync with the selection that was made, you should also store this date in the Globals
class so that if the user switches to the exercise or measurement log page, those pages can load data
that is relevant to the date selected. Otherwise, it could become confusing to the user to see data
from the selected date on one page and data from the current date on another.

solUtion

As stated in the “Design” section of this chapter, you will need to learn how to work with several
new Silverlight controls in order to implement the food log page solution. The food log user interface
will contain an AutoCompleteBox, DataGrid, GlobalCalendar, and ProgressBar. In addition to
these new controls, you will also see how to fully make use of WCF RIA Services in a data entry
scenario. You have already seen how to make use of this new framework when creating or authenti-
cating users of the site, but the real power comes when you need a full line of CRUD operations sup-
ported with minimal amounts of code required. I’m not going to lie—some of these new techniques
may feel a little bit strange when compared to traditional web service calls or even calling WCF
methods from a Silverlight client, but by the time you are done with this chapter, I’m confident you
will be ready to use these new features in your own business applications.

The discussion in the “Solution” section starts with a look at the food log page. As stated, the
design calls for a simple user interface containing an AutoCompleteBox, DataGrid, Calendar, and
a Button for creating new custom foods. While working on the food log implementation you are
going to see how to customize a DataGrid, use the new DataForm control to help users create cus-
tom foods, allow delete operations using a right-click menu, and provide users with the ability to
manage past and future log entries with the new GlobalCalendar control that was introduced in
the latest version of the Silverlight Toolkit.

534045c05.indd 200 3/13/10 4:51:58 PM

Solution ❘ 201

User interface
The user interface will need to include:

AutoCompleteBox➤➤ : The AutoCompleteBox will be used to assist users in searching for rel-
evant foods to add to their food log. Remember that in order to facilitate a speedy data entry
operation, the requirements state to let users enter only food names and make a selection
from the AutoCompleteBox.

GlobalCalendar➤➤ : This provides the users with the means to view previous and future food
log dates.

The ➤➤ DataGrid controls: These are responsible for not only displaying any food log entries
but also for providing the user with the means to make updates to serving information. If
users need to change the number of servings they will need to do it after creating the new
entry. While in-place editing in the DataGrid control may have been challenging in previous
versions of Silverlight, it is a breeze now, especially when combined with WCF RIA Services
on the backend. Any time the user makes a selection from the control, the data being dis-
played in the DataGrid control should be refreshed. The DataGrid also consists of a right-
click menu that gives users the ability to delete any selected entries.

DataForm➤➤ : The user interface will also contain a button that, when clicked, should display a
modal DataForm where users will be able to enter custom food information and save to the
database.

Rather than dump a whole bunch of XAML code on you, I’d like to cover each individual area of
the user interface separately. First up is the overall layout of the screen. By now, you should be pretty
familiar with how the DockPanel control works and, as you may have noticed, you will come to rely
on this control to control the layout of most of the pages on the site. In the following code, in addition
to one main DockPanel control that contains all of the page content, there is also an inner panel that
will hold the page header and ProgressBar controls.

<!--These are located in App.xaml since they are shared across food,
exercise, and measurement log pages -->

<Style x:Key=”HeaderDockPanelStyle” TargetType=”toolkit:DockPanel”>
 <Setter Property=”LastChildFill” Value=”False” />
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Top” />
</Style>

<Style x:Key=”CalendarPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Right” />
</Style>

<Style x:Key=”LogPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”Margin” Value=”10,5,10,0” />
 <Setter Property=”MaxWidth” Value=”600” />

534045c05.indd 201 3/13/10 4:51:59 PM

202 ❘ ChaPter 5 One MOre Slice can’t Hurt

</Style>

<toolkit:DockPanel Style=”{StaticResource LogDockPanelStyle}”>
 <toolkit:DockPanel Style=”{StaticResource
HeaderDockPanelStyle}”>
 <!-- Header and Progress Bar go here
Progress bar right aligned>
 </toolkit:DockPanel>
 <StackPanel Style=”{StaticResource CalendarPanelStyle}”>
 <!-- Global Calendar will go here-->
 </StackPanel>
 <StackPanel Style=”{StaticResource LogPanelStyle}”>
 <StackPanel Style=”{StaticResource
FoodEntryStackPanelStyle}”>
 <!-- AutoCompleteBox and Custom Food controls -->
 </StackPanel>
 <!-- DataGrid for food log entries goes here -->
 </StackPanel>
</toolkit:DockPanel>

Code snippet FoodLog.xaml

Notice that several styles are shared across multiple log pages and even though they are shown here
in the code snippet, the actual styles reside in App.xaml, so that the exercise and measurement log
pages can also take advantage of these common styles. After completing the layout of the page,
you need to add the header text and ProgressBar. The header text will just be the title of the page,
which in this case is “Food Log.” The ProgressBar is a nice addition to the user interface that you
can make visible any time there is a potentially length-asynchronous operation taking place. You
don’t necessarily have to know how long server operations will take so it’s not a true progress dis-
play that you are trying to show here. All you want to accomplish with the ProgressBar is show
the user that something is going on in the background. By setting the IsIndeterminate property to
true, the ProgressBar will just show an animation when made visible. Here are the XAML declara-
tions for the header text and ProgressBar.

<!-- ProgressBarStyle, HeaderTextBaseStyle, and HeaderTextStyle are
all in App.xaml -->

<Style x:Key=”ProgressBarStyle” TargetType=”ProgressBar”>
 <Setter Property=”Margin” Value=”10,0,10,0” />
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Right” />
 <Setter Property=”IsIndeterminate” Value=”True” />
 <Setter Property=”Height” Value=”20” />
 <Setter Property=”Width” Value=”300” />
 <Setter Property=”Visibility” Value=”Collapsed” />
</Style>

<Style x:Key=”HeaderTextBaseStyle” TargetType=”TextBlock”>
 <Setter Property=”FontSize” Value=”14” />
 <Setter Property=”Foreground” Value=”#FF000000” />
</Style>

<Style x:Key=”HeaderTextStyle” TargetType=”TextBlock”

534045c05.indd 202 3/13/10 4:51:59 PM

Solution ❘ 203

 BasedOn=”{StaticResource HeaderTextBaseStyle}”>
 <Setter Property=”Margin” Value=”10,0,0,0” />
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Left” />
</Style>

<Style x:Key=”FoodLogHeaderStyle” BasedOn=”{StaticResource
HeaderTextStyle
 <Setter Property=”Text” Value=”Today’s Food Log” />
</Style>

<TextBlock Style=”{StaticResource FoodLogHeaderStyle}” />
<TextBlock x:Name=”SelectedDate” Style=”{StaticResource
 SelectedDateTextStyle}” />
<ProgressBar x:Name=”ProgressBar” Style=”{StaticResource
 ProgressBarStyle}” />

Code snippet FoodLog.xaml

Next up is the AutoCompleteBox control. The AutoCompleteBox control has been dramatically
improved in the latest version of the Silverlight Toolkit and will provide you with everything you
need to assist users during the food search process. For this application, you are concerned with
a few properties including FilterMode, MimimumPopulateDelay, MimimuPrefixLength, and
IsTextCompletionEnabled. In order to get started with the control, you need to add the following
namespace in your page namespace list:

xmlns:controls_input=”clr-
namespace:System.Windows.Controls;
assembly=System.Windows.
Controls.Input”

Code snippet FoodLog.xaml

The following is the XAML code for the AutoCompleteBox used on the food log page:

<Style x:Key=”AutoCompleteBoxStyle”
TargetType=”controls_input:AutoCompleteBox”>
 <Setter Property=”FilterMode” Value=”Custom” />
 <Setter Property=”IsTextCompletionEnabled” Value=”False” />
 <Setter Property=”Margin” Value=”10,0,0,0” />
 <Setter Property=”Width” Value=”320” />
 <Setter Property=”MaxWidth” Value=”320” />
 <Setter Property=”MinimumPopulateDelay” Value=”500” />
 <Setter Property=”MinimumPrefixLength” Value=”3” />
</Style>

<Style x:Key=”FoodSearchingTextStyle” BasedOn=”{StaticResource
LogPanelSearchingTextStyle}” TargetType=”TextBlock”>
 <Setter Property=”Text” Value=”Searching Foods...” />
</Style>

<TextBlock Text=”Search” Style=”{StaticResource LogPanelLabelStyle}” />
 <controls_input:AutoCompleteBox x:Name=”AutoComplete” Style=”{StaticResource

534045c05.indd 203 3/13/10 4:51:59 PM

204 ❘ ChaPter 5 One MOre Slice can’t Hurt

AutoCompleteBoxStyle}”>
 <controls_input:AutoCompleteBox.ItemTemplate>
 <DataTemplate>
 <StackPanel>
 <ContentPresenter Content=”{Binding name}” />
 </StackPanel>
 </DataTemplate>
 </controls_input:AutoCompleteBox.ItemTemplate>
 </controls_input:AutoCompleteBox>
<TextBlock x:Name=”SearchingText” Style=”{StaticResource
FoodSearchingTextStyle}” />

Code snippet FoodLog.xaml

Included in the XAML for the AutoCompleteBox declaration is a TextBlock that acts as a label
so users know this is a search box. Also included is another TextBlock control that displays a
“Searching Foods … ” message as users type in the control. This just adds a little clarity to the inter-
face so that users know that something is actually happening as they type food names in the control.
As far as the AutoCompleteBox itself, you are setting the FilterMode, IsTextCompletionEnable,
MinimumPopulateDelay, and MinimumPrefixLength properties to the values shown in Table 5-3.

table 5-3: AutoCompleteBox Properties

ProPerty ValUe PUrPose

FilterMode Custom

Possible values include

StartsWith, Contains,

None, Custom

You will be using String.Contains

logic but instead of returning all pos-

sible foods and running the logic on the

client, you will perform the filtering on

the server so Custom is required.

IsTextCompletionEnabled False You want users to make their own

selection so set this to false. Otherwise

the control will automatically make the

closest match by default.

MinimumPopulateDelay 3 This value basically ensures that you

allow the user at least three seconds to

start typing before the actual database

query occurs.

MinimumPrefixLength 3 This value is used by the control to

determine the minimum number of

characters that need to be entered

before performing a query.

534045c05.indd 204 3/13/10 4:51:59 PM

Solution ❘ 205

Beside the AutoCompleteBox will also be a button for creating custom foods. In the code behind,
you’ll hook up to the Click event to display the custom food creation dialog. The XAML for this
button is simple:

<Style x:Key=”CustomFoodButtonStyle” TargetType=”Button”>
 <Setter Property=”Margin” Value=”10,0,0,0” />
 <Setter Property=”VerticalAlignment” Value=”Center” />
 <Setter Property=”FontSize” Value=”10” />
 <Setter Property=”Content” Value=”Custom Food” />
</Style>

<Button x:Name=”CustomFood” Style=”{StaticResource
CustomFoodButtonStyle}” />

Code snippet FoodLog.xaml

The next major control on the page is the GlobalCalendar. This control can be utilized by adding
the following namespace to the page:

xmlns:toolkit=”clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Toolkit”

Code snippet FoodLog.xaml

As described earlier, enhancements made to this control will finally let you alter the appearance of
specific calendar days. This is especially important in the FitnessTrackerPlus application because the
GlobalCalendar will be used by users to view previous food log entries. In order for users to know
which days actually contain food log entries, you need to change the background color of the days
containing the entries. This visual clue lets users know which calendar day to select rather than forc-
ing them to remember exactly which days they entered data on. In previous versions of the runtime,
it was simply not possible to alter the appearance of specific days, but the new GlobalCalendar
provides a great mechanism that lets you create a custom CalendarDayButtonStyleSelector class
along with custom styles that can be applied using the selector. You will see how all of this works in
the code behind discussion, but for now, just know that the styles for ValidLogDateSelector and
InvalidLogDateSelector are returned by the ValidLogDateSelector class.

<!-- Calendar style is shared so it resides in App.xaml -->

<Style x:Key=”CalendarStyle” TargetType=”toolkit:GlobalCalendar”>
 <Setter Property=”SelectionMode” Value=”SingleDate” />
</Style>

<toolkit:GlobalCalendar x:Name=”Calendar” Style=”{StaticResource
CalendarStyle}”>
 <toolkit:GlobalCalendar.CalendarDayButtonStyleSelector>
 <fitnesstrackerplus_calendar:ValidLogDateSelector>

534045c05.indd 205 3/13/10 4:51:59 PM

206 ❘ ChaPter 5 One MOre Slice can’t Hurt

 <fitnesstrackerplus_calendar:ValidLogDateSelector.
ValidLogDateStyle>
 <Style BasedOn=”{StaticResource
BasicDayButtonStyle}” TargetType=”toolkit_primitives:GlobalCalendarDayButton”>
 <Setter Property=”Background”
Value=”#FF999999” />
 </Style>
 </fitnesstrackerplus_calendar:ValidLogDateSelector.
ValidLogDateStyle>
 <fitnesstrackerplus_calendar:ValidLogDateSelector.
InvalidLogDateStyle>
 <Style BasedOn=”{StaticResource
BasicDayButtonStyle}” TargetType=”toolkit_primitives:GlobalCalendarDayButton”>
 <Setter Property=”Background”
Value=”#FFFFFFFF” />
 </Style>
 </fitnesstrackerplus_calendar:ValidLogDateSelector.
InvalidLogDateStyle>
 </fitnesstrackerplus_calendar:ValidLogDateSelector>
 </toolkit:GlobalCalendar.CalendarDayButtonStyleSelector>
</toolkit:GlobalCalendar>

Code snippet FoodLog.xaml

There is something in the preceding code that I want to bring to your attention. Notice how the styles
defined in the ValidLogDateStyle and InvalidLogDateStyle are based on the BasicDayButtonStyle.
The BasicDayButtonStyle is part of the GlobalCalendar and requires the following namespace
declaration in App.xaml.

xmlns:toolkit_primitives=”clr-
namespace:System.Windows.Controls.Primitives;
assembly=System.Windows.Controls.Toolkit”

Code snippet App.xaml

You also need to include the complete BasicDayButtonStyle definition in the App.xaml file in order
for the BasedOn property to work correctly. I won’t list that particular style because it is massive,
but if you take a look at App.xaml you will find the complete declaration there. So now that you
have a couple of styles designed, how does the GlobalCalendar actually make use of them? Well the
GlobalCalendar is looking for a custom implementation of the CalendarDayButtonStyleSelector.
In this case, that implementation is the ValidLogDateSelector class.

You should create a new folder in the Silverlight project called Utility and add the new class to the proj-
ect. Now typically this discussion could be held off until the business logic discussion, but I want to
show you how this works while the XAML code is still fresh in your mind. After you add the class, the
GlobalCalendar will call the SelectStyle method passing in the current day and the button container
object. While in this method you can check the date against a list of valid food log dates to see if there

534045c05.indd 206 3/13/10 4:51:59 PM

Solution ❘ 207

is a match. If the date is contained in the list, you will return the ValidLogDateStyle; otherwise, you
return the InvalidLogDateStyle. Listing 5-1 shows the code for the ValidLogDateSelector class:

listing 5-1: ValidLogDateSelector.cs

using System;
using System.Collections;
using System.Collections.Generic;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Controls.Primitives;
using FitnessTrackerPlus.Web.Services;

namespace FitnessTrackerPlus.Utility
{
 public class ValidLogDateSelector:
CalendarDayButtonStyleSelector
 {
 private static List<DateTime> ValidLogDates = new
List<DateTime>();
 private static FoodContext context = new FoodContext();

 public Style ValidLogDateStyle { get; set; }
 public Style InvalidLogDateStyle { get; set; }

 public ValidLogDateSelector()
 {
 context.GetLogEntryDates(Globals.CurrentUser.id,
 (DatesLoaded) =>
 {
 if (!DatesLoaded.HasError)
 {
 IEnumerator<DateTime> enumerator =
DatesLoaded.Value.GetEnumerator();
 ValidLogDates.Clear();

 while (enumerator.MoveNext())
 ValidLogDates.Add(enumerator.Current.
Date);
 }

 }, null);
 }

 public override Style SelectStyle(DateTime day,
GlobalCalendarDayButton container)
 {
 if (ValidLogDates.Contains(day.Date))
 return ValidLogDateStyle;

 return InvalidLogDateStyle;
 }
 }
}

534045c05.indd 207 3/13/10 4:52:00 PM

208 ❘ ChaPter 5 One MOre Slice can’t Hurt

As you can see, in the constructor you are getting a list of dates that contain log entries for the cur-
rently logged in user. The list needs to be static as the SelectStyle method will be called for every
currently displayed date. So if the user switches to a different month you need to perform the lookup
logic again. You’ll see the business logic for the GetLogEntryDates method soon, but for now just
know that it will return a valid list of DateTime objects that contain food log entries.

Finally, after all of that, you are simply left with the DataGrid control. There are a couple of things
that you need to think about before just adding a plain old DataGrid to the user interface. Remember
you want the users to have full CRUD capabilities on their food log data. This means you have to
think about how you want your users to delete entries. Many simple DataGrid definitions just include
a delete button per row. I have never really been a big fan of this and prefer having CheckBox con-
trols that can be selected for individual rows and a CheckBox in the header that will select/deselect all
entries.

If you have worked with the DataGrid control in the past, you probably already know the
dilemmas:

You can’t simply add a ➤➤ CheckBox control to the header of a given DataGrid column.
Instead, you need to create a custom header style that includes the said CheckBox control in
the template.

Even though the ➤➤ DataGrid control includes a built-in CheckBox column, you must have it
bound to a property in the food log entry in order for it to work correctly. You don’t really
want to have a separate field just for this. So in order to accomplish the individual row
CheckBox you have to rely on a custom column template.

With all of that said, here is the XAML for the DataGrid control, including the custom header style
that has the CheckBox control.

<Style x:Key=”DataGrid” TargetType=”data:DataGrid”>
 <Setter Property=”AutoGenerateColumns” Value=”False” />
 <Setter Property=”IsReadOnly” Value=”False” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”HorizontalScrollBarVisibility” Value=”Auto” />
 <Setter Property=”CanUserResizeColumns” Value=”True” />
 <Setter Property=”SelectionMode” Value=”Single” />
 <Setter Property=”ColumnWidth” Value=”SizeToHeader” />
</Style>

<Style x:Key=”DataGridColumnHeaderCheckBox”
TargetType=”data_primitives:DataGridColumnHeader”>
 <Setter Property=”Foreground” Value=”#FF444444” />
 <Setter Property=”HorizontalContentAlignment” Value=”Center” />
 <Setter Property=”VerticalContentAlignment” Value=”Center” />
 <Setter Property=”FontSize” Value=”10.5” />
 <Setter Property=”FontWeight” Value=”Bold” />
 <Setter Property=”IsTabStop” Value=”False” />
 <Setter Property=”SeparatorBrush” Value=”#FFC9CACA” />
 <Setter Property=”Padding” Value=”4,4,5,4” />
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate

534045c05.indd 208 3/13/10 4:52:00 PM

Solution ❘ 209

TargetType=”data_primitives:DataGridColumnHeader”>
 <Grid Name=”Root”>
 <Grid.RowDefinitions>
 <RowDefinition Height=”*” />
 <RowDefinition Height=”*” />
 <RowDefinition Height=”Auto” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition Width=”*” />
 <ColumnDefinition Width=”Auto” />
 </Grid.ColumnDefinitions>
 <Rectangle x:Name=”BackgroundRectangle”
Stretch=”Fill” Fill=”#FF1F3B53” Grid.ColumnSpan=”2” Grid.RowSpan=”2” />
 <Rectangle x:Name=”BackgroundGradient”
Stretch=”Fill” Grid.ColumnSpan=”2” Grid.RowSpan=”2” >
 <Rectangle.Fill>
 <LinearGradientBrush
StartPoint=”.7,0” EndPoint=”.7,1”>
 <GradientStop Color=”#FFFFFFFF”
Offset=”0.015” />
 <GradientStop Color=”#F9FFFFFF”
Offset=”0.375” />
 <GradientStop Color=”#E5FFFFFF”
Offset=”0.6” />
 <GradientStop Color=”#C6FFFFFF”
Offset=”1” />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <CheckBox x:Name=”CheckAll” Grid.RowSpan=”3”
Grid.ColumnSpan=”3” Style=”{StaticResource DataGridCheckBox}”
Checked=”CheckAll_Checked” Unchecked=”CheckAll_Checked” />
 <Rectangle Name=”VerticalSeparator”
Grid.RowSpan=”2” Grid.Column=”2” Width=”1” VerticalAlignment=”Stretch”
Fill=”{TemplateBinding SeparatorBrush}” Visibility=”{TemplateBinding
SeparatorVisibility}”
 />
 </Grid>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

<Style x:Key=”DeleteSelectedStyle” TargetType=”Button”>
 <Setter Property=”Content” Value=”Delete Selected” />
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
</Style>

<data:DataGrid x:Name=”FoodLogGrid” Style=”{StaticResource DataGrid}”>
 <data:DataGrid.Columns>
 <data:DataGridTemplateColumn Header=”Foods” HeaderStyle=”{StaticResource
DataGridColumnHeaderCentered}”>

534045c05.indd 209 3/13/10 4:52:00 PM

210 ❘ ChaPter 5 One MOre Slice can’t Hurt

 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=Food.name}”
Style=”{StaticResource FoodNameStyle}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Servings”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=servings}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 <data:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <TextBox Text=”{Binding Path=servings, Mode=TwoWay}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellEditingTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Serving Size”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=Food.serving_size}”
Style=”{StaticResource DataGridTextBlock}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Cal” HeaderStyle=”{StaticResource
DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=Food.calories}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Fat” HeaderStyle=”{StaticResource
DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=Food.fat}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Carb” HeaderStyle=”{StaticResource
DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>

534045c05.indd 210 3/13/10 4:52:00 PM

Solution ❘ 211

 <TextBlock Text=”{Binding Path=Food.carbohydrate}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Pro” HeaderStyle=”{StaticResource
DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=Food.protein}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn HeaderStyle=”{StaticResource
DataGridColumnHeaderCheckBox}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <CheckBox x:Name=”DeleteEntry” Style=”{StaticResource
DataGridCheckBox}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
</data:DataGrid>

Code snippet FoodLog.xaml

A couple of additional styles are used throughout the DataGrid such as the DataGridCheckBox style
and DataGridTextBlockCentered. All these styles do is ensure that the column data is centered in
the container.

With the DataGrid declaration complete, it’s time to turn your attention over to the right-click con-
text menu that you want to appear whenever the user performs a right mouse click on the DataGrid
control. To keep this simple, you should just add a new Canvas control with a Border and a few
TextBlock controls. Context menus don’t need to take up too much space and the only options you
want in these menus are those that delete selected entries and cancel the display of the menu. Later
on, this may prove to be a good place to add a print entries option as well but for now delete and
cancel should be good. The following code shows the XAML for the context menu as well as the
accompanying Style declarations.

<Style x:Key=”RightClickMenuStyle” TargetType=”Canvas”>
 <Setter Property=”Visibility” Value=”Collapsed” />
 <Setter Property=”Width” Value=”150” />
 <Setter Property=”Canvas.ZIndex” Value=”100” />
</Style>
<Style x:Key=”RightClickMenuItemStyle” TargetType=”TextBlock”>
 <Setter Property=”Margin” Value=”5” />
 <Setter Property=”Cursor” Value=”Hand” />

534045c05.indd 211 3/13/10 4:52:00 PM

212 ❘ ChaPter 5 One MOre Slice can’t Hurt

</Style>
<Style x:Key=”RightClickMenuBorderStyle” TargetType=”Border”>
 <Setter Property=”BorderThickness” Value=”2” />
 <Setter Property=”Margin” Value=”5” />
 <Setter Property=”HorizontalAlignment” Value=”Left” />
 <Setter Property=”VerticalAlignment” Value=”Top” />
 <Setter Property=”Canvas.Top” Value=”0” />
 <Setter Property=”Canvas.Left” Value=”0” />
 <Setter Property=”BorderBrush” Value=”#FF000000” />
 <Setter Property=”Background” Value=”#FFFFFFFF” />
</Style>

<Canvas x:Name=”RightClickMenu” Style=”{StaticResource RightClickMenuStyle}”>
 <Border x:Name=”RightClickBorder” Style=”{StaticResource
RightClickMenuBorderStyle}”>
 <StackPanel>
 <TextBlock x:Name=”DeleteEntryMenu”
Text=”Delete Selected Entries” Style=”{StaticResource RightClickMenuItemStyle}” />
 <TextBlock x:Name=”CancelEntryMenu”
Text=”Cancel” Style=”{StaticResource RightClickMenuItemStyle}” />
 </StackPanel>
 </Border>
</Canvas>

Code snippet FoodLog.xaml

As you can see there really isn’t much to this. Perhaps the most interesting part is that the Canvas
control has its Canvas.ZIndex property set to a high number so that the context menu appears
above the DataGrid control when it is made visible. In the code behind just before the menu is made
visible you will see that the Canvas is expanded so that it is the same height and width of the screen
and the Border control is repositioned in such a way that it appears next to the mouse cursor rela-
tive to the DataGrid control. Obviously this is a very simple context menu that does the job for this
application. However in your own applications you may want to spice it up with some hover brushes
and various TextBlock styling techniques.

Well, that just about covers the user interface controls that are required. Figure 5-2 shows the user
interface in action with some food log entries already created. Figure 5-3 shows the AutoCompleteBox
working as well. Notice that dates on the GlobalCalendar have a different background if there
were valid log entries for those dates.

With the user interface implementation complete, you can now move on to the database implementa-
tion. The food log page design calls for the creation of several new tables, so let’s get started on this.

534045c05.indd 212 3/13/10 4:52:00 PM

Solution ❘ 213

FigUre 5-2

FigUre 5-3

534045c05.indd 213 3/13/10 4:52:00 PM

214 ❘ ChaPter 5 One MOre Slice can’t Hurt

Database
According to the design, you need to add the foods, and food_logs tables to the database. The design
also calls for FitnessTrackerPlus to provide users with an extensive database of default foods to search
from. Don’t worry—I don’t expect you to grab all
of the foods in your cupboard and start manually
entering the nutrition facts. I took the liberty of
supplying some foods and associated nutrition
facts in the supplied .MDF file included with the
source code for this chapter. You can see the
tables along with the defined constraints and
relationships in the database diagram in
Figure 5-4.

Data access
The data access layer for the food log page will require the creation of another LINQ to SQL class
file called Foods.dbml. As you did with the other LINQ to SQL classes, you should add this file to
the Data folder in the ASP.NET project. After cre-
ating the new DBML file, you can go ahead and
drag and drop the foods, and food_logs tables
onto the designer. Before saving the file, however,
you should rename these tables so that the entity
creation matches the format you used when creat-
ing the Users and Annoucements LINQ to SQL
classes. Figure 5-5 shows the designer view of the
completed DBML file for the Foods LINQ to SQL
classes.

As always, there is no additional work to perform on
your end in order to actually create the various data
access classes. All you have to do is save the DBML file
and you are ready to go.

business logic
There is plenty of business logic required for the food
log page, but as you will see by making use of the WCF
RIA Services it won’t require enormous amounts of
code. The first step is to look at the operations that are
required by the page. You know that users will need
to perform CRUD operations of all of the LINQ to
SQL entities such as foods, serving sizes, and food log
entries. As in the previous chapters, you should also
plan on providing validation for these entities; you
already have seen how to make use of the metadata fea-
ture for WCF RIA Services. To get everything started,

FigUre 5-4

FigUre 5-5

FigUre 5-6

534045c05.indd 214 3/13/10 4:52:01 PM

Solution ❘ 215

you need to add a new DomainService to the ASP.NET project in the Services folder. The domain
service class name should be FoodService and you should check the “Enable client access” option.
When choosing the appropriate DataContext, you should choose the FoodsDataContext. This will
display the Food, and FoodLogEntry entities. You should check the “Enable editing” option for both
of them, as shown in Figure 5-6.

Now that the FoodService is created, you will see that CRUD operations have already been imple-
mented for all of the selected entities. The first thing that users see when they arrive at the food log
page is a display in the DataGrid of any food log entries that have been created for the current day.
So you should modify the Query method for the FoodLogEntry entity to look up all food log entries
for the given date and user, as shown in the following code:

public IQueryable<FoodLogEntry> GetFoodLogEntries(int user_id, DateTime
entry_date, bool load_serving_sizes)
{
 DataLoadOptions options = new DataLoadOptions();

 // Ensure that specific food information is available

 options.LoadWith<FoodLogEntry>(e => e.Food);

 this.DataContext.LoadOptions = options;
 return this.DataContext.FoodLogEntries.Where(e => e.user_id == user_id &&
e.entry_date.Date == entry_date.Date);
}

Code snippet FoodService.cs

Because the name property of the associated Food object must be displayed in the DataGrid as well
as the calories, fat, protein, and carbohydrate values you need to make sure that the LINQ
to SQL returns the Food property from the query. The line options.LoadWith<FoodLogEntry>(e
=> e.Food) takes care of this problem by telling the DataContext object to load the Food object
associated with each FoodLogEntry record. Now, in addition to setting the DataLoadOptions, you
must also instruct the WCF RIA services to return the associated Food entity. This is done by modi-
fying the metadata class for the FoodLogEntry. In the FoodLogEntry class, you need to add the
[Include] attribute to the Food property as shown here.

[MetadataTypeAttribute(typeof(FoodLogEntry.FoodLogEntryMetadata))]
public partial class FoodLogEntry
{
 internal sealed class FoodLogEntryMetadata
 {
 private FoodLogEntryMetadata()
 {
 }

 public DateTime entry_date;

 [Include]

534045c05.indd 215 3/13/10 4:52:01 PM

216 ❘ ChaPter 5 One MOre Slice can’t Hurt

 public Food Food;

 public int food_id;

 public int id;

 public double servings;

 public int user_id;
 }
}

Code snippet FoodService.metadata.cs

It is important to note that regardless of the DataLoadOptions assigned, the WCF RIA Services
runtime will return only associated entities that are marked with the [Include] attribute. In other
words, both steps are required to get this working properly.

After modifying the query method for food log entry retrieval, you need to look at the business
logic required for the AutoCompleteBox. As users type the first few letters of a food, you want to
search the database and return a list of appropriate matches. You will need a custom query method
that performs this search. The following SearchFood method will query the database for any Food
object whose food_name property Contains the search text.

[Query]
public IQueryable<Food> SearchFoods(int user_id, int max_results,
string search_text, bool load_serving_sizes)
{
 var foods = (from c in this.DataContext.Foods
 where c.name.ToLower().Contains(search_text.ToLower()) &&
 (c.user_id == 1 || c.user_id == user_id)
 select c).Take<Food>(max_results);

 return foods;
}

Code snippet FoodService.cs

Because the method does not follow the WCF RIA Services naming convention guidelines for query
methods, you need to add the [Query] attribute above the method declaration in order for it to be
exposed to the client. There are also several parameters to the method that should be explained. You
want to search for both default foods and custom foods created by the user so you will need to know
the user_id of the currently logged in user and make use of that in the LINQ query. You also don’t
want to return thousands of results, so the max_results parameter takes care of limiting the result set.

The final area of custom business logic that you should be aware of is the method used by the
GlobalCalendar for styling valid log entry dates. The GetLogEntryDates method looks for any
dates that contain log entries and returns a unique list of those dates to the GlobalCalendar.
Because you aren’t returning any actual entity data, you need to decorate this with the [Invoke]

534045c05.indd 216 3/13/10 4:52:01 PM

Solution ❘ 217

attribute to ensure that it is exposed by the WCF RIA services. Here is the code for the
GetLogEntryDates method:

[Invoke]
public List<DateTime> GetLogEntryDates(int user_id)
{
 List<DateTime> dates = new List<DateTime>();

 var entries = from c in this.Context.FoodLogEntries
 where c.user_id == user_id
 select c.entry_date;

 foreach (DateTime date in entries)
 {
 if (!dates.Contains(date.Date))
 dates.Add(date);
 }

 return dates;
}

Code snippet FoodService.cs

User interface Code behind
Now that the business logic is complete, it’s time to look at the various event handlers that are
required to make the food log page run. To start, let’s look at what happens when the page is first
loaded. When the user arrives at the food log page they expect to see any food log entries that were
created for the currently selected date. This will involve overriding the OnNavigatedTo event and
loading the entries as shown.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 LoadFoodLog();
}

private void LoadFoodLog()
{
 ProgressBar.Visibility = Visibility.Visible;

 context = new FoodContext();
 FoodLogGrid.ItemsSource = context.FoodLogEntries;

 context.Load<FoodLogEntry>(context.GetFoodLogEntriesQuery(
 Globals.CurrentUser.id,
 Globals.SelectedDate, true),
 (EntriesLoaded) =>
 {
 ProgressBar.Visibility = Visibility.Collapsed;

 }, null);
}

Code snippet FoodLog.xaml.cs

534045c05.indd 217 3/13/10 4:52:01 PM

218 ❘ ChaPter 5 One MOre Slice can’t Hurt

Loading the food log entries from the WCF RIA service requires creating a new instance of
the FoodContext object and calling its LoadMethod. The FoodLogGrid only needs to have its
ItemSource property set to the FoodLogEntries EntityList. Once the operation is complete, the
DataGrid will refresh with the latest results. As you can see, you are displaying the ProgressBar
before the asynchronous operation is started and hiding it when all of the data is loaded. This will
be a common technique used throughout the code behind for all of the data entry pages.

In order for users to start entering foods in the food log, you need to hook up some important
event handlers for the AutoCompleteBox. You will need handlers for the ItemFilter, Populating,
DropDownOpened, GotFocus, SelectionChanged, and TextChanged events, as shown here:

AutoComplete.ItemFilter += (se, evt) => { return true; };
AutoComplete.Populating += new
PopulatingEventHandler(AutoComplete_Populating);
AutoComplete.DropDownOpened += (se, ev) => {
SearchingText.Visibility = Visibility.Collapsed; };

AutoComplete.GotFocus += (se, ev) => AutoComplete.Text = “”;
AutoComplete.SelectionChanged += (se, ev) =>
{
 if (AutoComplete.SelectedItem != null)
 CreateFoodLogEntry(AutoComplete.SelectedItem as
FitnessTrackerPlus.Web.Data.Food);

 SearchingText.Visibility = Visibility.Collapsed;
};

AutoComplete.TextChanged += (se, ev) =>
{
 if (String.IsNullOrEmpty(AutoComplete.Text))
 SearchingText.Visibility = Visibility.Collapsed;
 else
 {
 SearchingText.Text = “Searching Foods..”;
 SearchingText.Visibility = Visibility.Visible;
 }
};

private void AutoComplete_Populating(object sender, PopulatingEventArgs e)
{
 // Search for matching foods and make sure that the ServingSize
 // information is returned

 FoodContext autocompleteContext = new FoodContext();

 AutoComplete.ItemsSource = autocompleteContext.Foods;

autocompleteContext.Load<FitnessTrackerPlus.Web.Data.Food>
(autocompleteContext.SearchFoodsQuery(Globals.CurrentUser.id,
Globals.MaxAutoCompleteResults, AutoComplete.Text, true),
System.Windows.Ria.LoadBehavior.RefreshCurrent,
 (FoodsLoaded) =>
 {

534045c05.indd 218 3/13/10 4:52:01 PM

Solution ❘ 219

 if (!FoodsLoaded.HasError)
 {
 AutoComplete.PopulateComplete();

 if (FoodsLoaded.TotalEntityCount == 0)
 SearchingText.Text = “No foods found”;
 }

 }, null);

 e.Cancel = true;
}

Code snippet FoodLog.xaml.cs

The AutoComplete_Populating event handler is responsible for calling the SearchFoods operation
on the server, and it will simply load all returned foods into the Food EntityList. When the opera-
tion completes, you need to call PopulateComplete to let the AutoCompleteBox know that you
are finished populating the ItemsSource with data. If there are no foods returned, you should let
the user know using the adjacent TextBlock. The adjacent TextBlock will remain hidden until the
TextChanged event is triggered, which occurs as soon as the user starts typing in the control. When
the asynchronous loading of the control is complete, the DropDownOpened event is triggered causing
the TextBlock to become hidden again. After the DropDownOpened event is fired, the user can now
make a food selection from the list of results. After the selection is made, the SelectionChanged
event is fired and a new food log entry is created using the selected food and default serving infor-
mation. Here is the code that is responsible for creating the new food log entry:

private void CreateFoodLogEntry(FitnessTrackerPlus.Web.Data.Food food)
{
 FoodLogEntry entry = new FoodLogEntry();

 ProgressBar.Visibility = Visibility.Visible;

 // Setup new food log entry with selected date, food and current user

 entry.food_id = food.id;
 entry.entry_date = Globals.SelectedDate;
 entry.user_id = Globals.CurrentUser.id;
 entry.servings = 1;
 entry.Food = food;

 context.FoodLogEntries.Add(entry);
 context.SubmitChanges((ChangesSubmitted) => { ProgressBar.Visibility =
Visibility.Collapsed; }, null);
}

Code snippet FoodLog.xaml.cs

Creating the new entry is as simple as adding a new FoodLogEntry object to the FoodLogEntries
EntityList on the DomainContext object and calling SubmitChanges. When the operation com-
pletes, the new entry will automatically appear in the DataGrid. Can’t get much easier than that!
After the entry is created and the DropDownBox is once again collapsed, you will still see the search

534045c05.indd 219 3/13/10 4:52:01 PM

220 ❘ ChaPter 5 One MOre Slice can’t Hurt

text sitting in the AutoCompleteBox. Because this may be confusing to the user, you will clear the
search text in the GotFocus event.

Now that the AutoCompleteBox functionality is finished, it’s time to look at updating the existing
entries in the DataGrid. Because the user interface is geared around quickly adding entries to the
food log, you aren’t really providing users with the option to enter serving information. The idea
is that all of the foods are added quickly and then users can go back to the DataGrid and make
the appropriate edits to the servings column. This is the only column in the DataGrid that is not
Read-Only and has a CellEditingTemplate defined. Luckily, because the servings column is a
TextBlock control the DataGrid provides a CellEditingTemplate that contains a TextBox control
for updating, so there is no extra work to be done here.

Now you just need to add the code that will actually handle the update operation. When the user
double-clicks on a DataGrid row, any non-Read-Only cells will change to their corresponding
editing templates. At this point, the user can make changes to the data in the current cell. When
the row loses focus, the RowEditEnded event is thrown, so that is where you need to look at sav-
ing the changes to the database. By making use of the existing DomainContext you have for the
FoodService, you simply have to add the following code to get the changes submitted:

private void FoodLogGrid_RowEditEnded(object sender,
DataGridRowEditEndedEventArgs e)
{
 // Submit any food log changes and refresh the DataGrid

 if (context.HasChanges)
 {
 ProgressBar.Visibility = Visibility.Visible;
 context.SubmitChanges((ChangesSubmitted) =>
 {
 ProgressBar.Visibility = Visibility.Collapsed;

 }, null);
 }
}

Code snippet FoodLog.xaml.cs

That’s all there is to it. First you simply check to see if any changes have been made to the
DomainContext by looking at the HasChanges property, then a quick call to SubmitChanges and
everything will be saved to the database. You won’t even have to write any additional code to get
the DataGrid to refresh. All of that is taken care of by the underlying DomainContext and the
EntityList of FoodLogEntry objects that the DataGrid is bound to.

DataGrid Enhancements

Before moving on to the custom food creation and GlobalCalendar functionality, I want to make
you aware of some enhancements made to the DataGrid for the FitnessTrackerPlus log pages.
Sometimes when you complete the data binding operation and you have defined custom column
definitions, you may notice that the column sizes don’t always seem to line up well and you are often
left with additional empty space on the right side of the DataGrid entries, as shown in Figure 5-7.

534045c05.indd 220 3/13/10 4:52:02 PM

Solution ❘ 221

FigUre 5-7

Perhaps it’s nitpicking, but I would prefer that the checkbox column reside all the way to the right of
the DataGrid and that the food name column be expanded to fill up the rest of the remaining empty
space. Now you can, of course, change the column widths to fixed-width values or even use one of
the predefined DataGridLength constants, as shown in Table 5-4.

table 5-4: DataGridLength Values

ValUe meaning

Auto DataGrid handles sizing of column width.

SizeToCells Column will be same width as largest cell value.

SizeToHeader Column will be same width as column header value.

Although having these options is great, it won’t accomplish the goal of expanding the food name
column to use up all available space. What would be ideal here is to be able to define column widths
using star sizing like the regular Grid control. However, that is currently not an option available
in Silverlight so you have to come up with something else. In order to accomplish this, you can add
a new static helper class to the utility folder in the Silverlight project called DataGridHelper. The
following code shows the ResizeGrid method that you will use throughout FitnessTrackerPlus to

534045c05.indd 221 3/13/10 4:52:02 PM

222 ❘ ChaPter 5 One MOre Slice can’t Hurt

ensure that the CheckBox columns on DataGrid controls are aligned all the way to the right and that
the column index passed into the ResizeGrid method is expanded to utilize all the remaining space.

using System.Windows.Controls;

namespace FitnessTrackerPlus.Utility
{
 public static class DataGridHelper
 {
 public static void ResizeGrid(int column_index,
DataGrid grid)
 {
 double consumedWidth = 0;
 double availableWidth = 0;

 foreach (DataGridColumn column in grid.Columns)
 consumedWidth += column.ActualWidth;

 availableWidth = (grid.ActualWidth -
consumedWidth) - 5;

 // Expand the specified column to use up
 // all remaining width
 // Subtract 5 from available width to
 // avoid enabling horizontal scrollbar

 if (availableWidth > 0)
 {
 grid.Columns[column_index].Width = new
DataGridLength(availableWidth +
grid.Columns[column_index].Width.Value);
 grid.UpdateLayout();
 }
 }
 }
}

Code snippet DataGridHelper

In order to make use of this method you should add an event handler to the LayoutUpdated event
on the DataGrid like this:

FoodLogGrid.LayoutUpdated += (se, ev) =>
{
 DataGridHelper.ResizeGrid(0, FoodLogGrid);
};

Code snippet FoodLog.xaml.cs

Because the food name column is the first column in the DataGrid, you just pass in the index value
of zero along with the DataGrid itself. The DataGrid LayoutUpdated event fires whenever a new
log entry is created, updated, or deleted from the underlying data source. You also will get the event
to fire by resizing the browser window, which ensures that as the DataGrid expands to fill up the

534045c05.indd 222 3/13/10 4:52:02 PM

Solution ❘ 223

available space in the DockPanel control; the column sizes will also be corrected. Figure 5-8 shows
the updated DataGrid with the columns correctly sized and arranged by the ResizeGrid method.

FigUre 5-8

Adding Code to Select or Deselect All Rows

When designing the DataGrid, you added CheckBox controls to each row, including a CheckBox
column for the column header with the intent that clicking the column header CheckBox would
select/deselect all of the rows in the DataGrid. You declared a common event handler for both the
Checked and Unchecked events in the custom header style. Now it’s time to look at the code that
will make the Select/Deselect All items functionality actually work. Let’s take a look at the follow-
ing event handler code for the header CheckBox:

private void CheckAll_Checked(object sender, RoutedEventArgs e)
{
 foreach (FoodLogEntry entry in context.FoodLogEntries)
 {
 FoodLogGrid.SelectedItem = entry;
 CheckBox selectItem = FoodLogGrid.Columns[FoodLogGrid.Columns.Count -
1].GetCellContent(FoodLogGrid.SelectedItem) as CheckBox;

 if (selectItem != null)
 selectItem.IsChecked = (sender as CheckBox).IsChecked;
 }
}

Code snippet FoodLog.xaml.cs

534045c05.indd 223 3/13/10 4:52:02 PM

224 ❘ ChaPter 5 One MOre Slice can’t Hurt

As you can see, the easiest way to achieve this is to loop through all of the FoodLogEntry entities
that are currently loaded in the FoodContext object and make use of the GetCellContent call to
retrieve the CheckBox control for each row in the DataGrid and set the IsChecked property accord-
ingly. It would be great if there were a Rows collection object for the DataGrid similar to the one
found in the ASP.NET DataGrid control that you could iterate over but there is no such property
in the Silverlight version of the DataGrid. Instead you have to iterate through the collection that is
bound to the ItemsSource property of the DataGrid. You can then access individual rows by using
individual items from the ItemsSource. In order to delete the selected items from the DataGrid you
will need to make use of similar code. You will want to handle the item deletion code in the Click
event of the delete selected items Button control. The following is the code for the Click event:

private void DeleteSelected_Click(object sender, RoutedEventArgs e)
{
 List<FoodLogEntry> entries = new List<FoodLogEntry>();
 ProgressBar.Visibility = Visibility.Visible;

 foreach (FoodLogEntry entry in context.FoodLogEntries)
 {
 FoodLogGrid.SelectedItem = entry;

 CheckBox selectItem = FoodLogGrid.Columns[FoodLogGrid.Columns.Count -
1].GetCellContent(FoodLogGrid.SelectedItem) as CheckBox;

 if (selectItem != null)
 if (selectItem.IsChecked == true)
 entries.Add(entry);
 }

 foreach (FoodLogEntry entry in entries)
 context.FoodLogEntries.Remove(entry);

 context.SubmitChanges((EntriesRemoved) =>
 {
 ProgressBar.Visibility = Visibility.Collapsed;

 }, null);
}

Code snippet FoodLog.xaml.cs

The only major difference in this code is that you need to create a temporary list of selected food log
entries and delete them from the FoodContext outside of the main for each loop. If you attempt to
remove the items inside the loop, an exception is thrown because you are essentially modifying the
items in the collection while enumerating them—which never turns out well. After removing all of
the selected items, a call to SubmitChanges takes care of deleting the entries from the database and
refreshing the DataGrid control to reflect the changes to the collection.

Supporting the Right-Click Context Menu

With the code to delete all selected entries finished you can now turn your attention to displaying
and handling the DataGrid right-click context menu, which also lets users delete selected entries. In

534045c05.indd 224 3/13/10 4:52:02 PM

Solution ❘ 225

previous versions of Silverlight, when users performed a right mouse click, all they would see is the
Silverlight option that showed the About Silverlight windows as shown in Figure 5-9.

FigUre 5-9

Unfortunately, this makes it impossible to provide users with the traditional context menu behavior
to which they’ve become accustomed in rich, thick client applications. With Silverlight 4, however,
this is no longer a limitation and all controls now have corresponding MouseRightButtonDown and
MouseRightButtonUp events.

To get started displaying the context menu from the FoodLog.xaml page, you first need to handle
both of the events on the DataGrid control. In the constructor just add the following code:

FoodLogGrid.MouseRightButtonDown += (se, ev) => { ev.Handled = true; };
FoodLogGrid.MouseRightButtonUp += new
MouseButtonEventHandler(FoodLogGrid_MouseRightButtonUp);

Code snippet FoodLog.xaml

In the case of the MouseRightButtonDown event handler you need to set ev.Handled to true and
that’s all. What this does is tell the Silverlight runtime that you are handling the right mouse click
and Silverlight should not display the default context menu. Next, you need to add a handler for
the MouseRightButtonUp event. In the following code, the Border control has its Margin property
set in relation to the Canvas parent control. This is done using the coordinates passed from the
MouseButtonEventArgs parameter. Once the Margin is set the Visibility is toggled and the con-
text menu will appear to users.

534045c05.indd 225 3/13/10 4:52:03 PM

226 ❘ ChaPter 5 One MOre Slice can’t Hurt

protected void FoodLogGrid_MouseRightButtonUp(object sender,
MouseButtonEventArgs e)
{
 RightClickBorder.Margin = new Thickness(e.GetPosition(RightClickMenu).X,
e.GetPosition(RightClickMenu).Y, 0, 0);
 RightClickMenu.Visibility = Visibility.Visible;
}

Code snippet FoodLog.xaml.cs

In case you are wondering how the menu is correctly positioned, well earlier I said that in the con-
structor, the Canvas control that houses the overall context menu was going to be resized to the
full height and width of the screen. Once this is done setting the Margin property in relation to the
parent Canvas control will make sure that the Border control that contains the right-click menu
options is displayed in the correct place. The Canvas.ZIndex property being set to a large number
ensures that the DataGrid information does not bleed through the menu. Figure 5-10 shows the new
context menu that appears when the user performs a right-click operation.

FigUre 5-10

Now that the right-click menu appears you still need to handle the MouseLeftButtonDown
event for both the Delete Selected and Cancel options of the menu. In the following code, the
DeleteEntryMenu event handler just calls the previously implemented DeleteSelected_Click
event handler in order to perform the delete operation. In addition to this, both the Delete and
Cancel handlers ensure that the right-click menu is collapsed before exiting.

protected void DeleteEntryMenu_MouseLeftButtonDown(object sender,
MouseButtonEventArgs e)
{

534045c05.indd 226 3/13/10 4:52:03 PM

Solution ❘ 227

 DeleteSelected_Click(this, new RoutedEventArgs());
 RightClickMenu.Visibility = Visibility.Collapsed;
}

protected void CancelEntryMenu_MouseLeftButtonDown(object sender,
MouseButtonEventArgs e)
{
 RightClickMenu.Visibility = Visibility.Collapsed;
}

Code snippet FoodLog.xaml.cs

Creating the GlobalCalendar Event Handling Logic

One final item that needs to be addressed in the code behind file is the GlobalCalendar event han-
dling logic. When the user clicks any given date in the GlobalCalendar, you need to handle the
SelectedDatesChanged event and retrieve all the food log entries for the selected date. Upon retrieving
those entries, you then need to refresh the DataGrid to reflect the newly selected date. Here is the code for
the SelectedDatesChanged event that takes care of loading the food log entries for the selected date.

Calendar.SelectedDatesChanged += (se, ev) =>
{
 if (Calendar.SelectedDate.HasValue)
 {
 Globals.SelectedDate = Calendar.SelectedDate.Value;
 LoadFoodLog();
 }
};

Code snippet FoodLog.xaml.cs

When handling this event, you can’t forget to update the SelectedDate variable contained in the
static Globals class. By doing this, you ensure that if the user switches to the exercise or measure-
ment log pages, those pages load data based on the currently selected date rather than the current
date—which could potentially be confusing to users expecting to view entries from the date they
just selected on the GlobalCalendar control.

The following sections cover the control required to allow users to create custom foods and add
them to their current food log.

Supporting Custom Foods

Even though you are providing users with a pretty extensive list of default foods to choose from, it is
inevitable that they will want to add custom foods to the food log. You already have a Button con-
trol defined in the XAML code to handle this very scenario and the Click event handler will need
to display a custom food data entry form in a modal ChildWindow that users can make use of for
adding the custom food information. You’ll want to separate the code for creating the custom foods
into a new UserControl called CustomFood. This new control should be placed in the Views/Food
folder in the Silverlight project.

534045c05.indd 227 3/13/10 4:52:03 PM

228 ❘ ChaPter 5 One MOre Slice can’t Hurt

The CustomFood control basically consists of a DataForm with customized DataField declarations
that include all of the properties that go into creating a custom food object in the database. Because
the purpose of this DataForm is only to handle creating new custom foods, you can safely set the
DataForm to be in EditMode right from the start as well as hide any of the command buttons included
with the DataForm that are related to navigation of a collection or creating and deleting objects.
Listing 5-2 shows the XAML code for the CustomFood control, which shows the DataForm along
with the custom DataField declarations:

listing 5-2: CustomFood.xaml

<UserControl x:Class=”FitnessTrackerPlus.Views.Food.CustomFood”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:data_dataform=”clr-
namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Data.DataForm.Toolkit”>
 <UserControl.Resources>
 <Style x:Key=”CustomFoodFormStyle” TargetType=”data_dataform:DataForm”>
 <Setter Property=”AutoEdit” Value=”True” />
 <Setter Property=”AutoGenerateFields” Value=”False” />
 <Setter Property=”Foreground” Value=”#FF000000” />
 </Style>
 <Style x:Key=”NutritionFactsTextStyle” TargetType=”TextBlock”>
 <Setter Property=”Text” Value=”Nutrition Facts” />
 <Setter Property=”FontSize” Value=”18” />
 <Setter Property=”Margin” Value=”2,0,0,0” />
 </Style>
 <Style x:Key=”RectangleStyle” TargetType=”Rectangle”>
 <Setter Property=”Fill” Value=”#FF000000” />
 <Setter Property=”Stroke” Value=”#FF000000” />
 <Setter Property=”Margin” Value=”0,5,0,0” />
 </Style>
 <Style x:Key=”RectangleThinStyle” BasedOn=”{StaticResource
RectangleStyle}” TargetType=”Rectangle”>
 <Setter Property=”Height” Value=”2” />
 </Style>
 <Style x:Key=”RectangleThickStyle” BasedOn=”{StaticResource
RectangleStyle}” TargetType=”Rectangle”>
 <Setter Property=”Height” Value=”5” />
 </Style>
 <Style x:Key=”TextBoxStyle” TargetType=”TextBox”>
 <Setter Property=”FontSize” Value=”10” />
 <Setter Property=”TextAlignment” Value=”Center” />
 </Style>
 <Style x:Key=”LargeTextBoxStyle” BasedOn=”{StaticResource TextBoxStyle}”
TargetType=”TextBox”>
 <Setter Property=”Width” Value=”200” />
 </Style>
 <Style x:Key=”SmallTextBoxStyle” BasedOn=”{StaticResource TextBoxStyle}”
TargetType=”TextBox”>
 <Setter Property=”Width” Value=”50” />

534045c05.indd 228 3/13/10 4:52:03 PM

Solution ❘ 229

 <Setter Property=”HorizontalAlignment” Value=”Right” />
 </Style>
 </UserControl.Resources>
 <data_dataform:DataForm x:Name=”CustomFoodForm” Style=”{StaticResource
CustomFoodFormStyle}”>
 <data_dataform:DataForm.EditTemplate>
 <DataTemplate>
 <StackPanel>
 <TextBlock Style=”{StaticResource
NutritionFactsTextStyle}” />
 <Rectangle Style=”{StaticResource RectangleThinStyle}” />
 <data_dataform:DataField>
 <TextBox Text=”{Binding Path=name, Mode=TwoWay}”
Style=”{StaticResource LargeTextBoxStyle}” />
 </data_dataform:DataField>
 <data_dataform:DataField>
 <TextBox Text=”{Binding Path=amount, Mode=TwoWay}”
Style=”{StaticResource SmallTextBoxStyle}” />
 </data_dataform:DataField>
 <data_dataform:DataField>
 <TextBox Text=”{Binding Path=serving_size,
Mode=TwoWay}” Style=”{StaticResource LargeTextBoxStyle}” />
 </data_dataform:DataField>
 <Rectangle Style=”{StaticResource RectangleThickStyle}” />
 <data_dataform:DataField>
 <TextBox Text=”{Binding Path=calories, Mode=TwoWay}”
Style=”{StaticResource SmallTextBoxStyle}” />
 </data_dataform:DataField>
 <Rectangle Style=”{StaticResource RectangleThickStyle}” />
 <data_dataform:DataField>
 <TextBox Text=”{Binding Path=total, Mode=TwoWay}”
Style=”{StaticResource SmallTextBoxStyle}” />
 </data_dataform:DataField>
 <Rectangle Style=”{StaticResource RectangleThinStyle}” />
 <data_dataform:DataField>
 <TextBox Text=”{Binding Path=carbohydrate,
Mode=TwoWay}” Style=”{StaticResource SmallTextBoxStyle}” />
 </data_dataform:DataField>
 <Rectangle Style=”{StaticResource RectangleThinStyle}” />
 <data_dataform:DataField>
 <TextBox Text=”{Binding Path=protein, Mode=TwoWay}”
Style=”{StaticResource SmallTextBoxStyle}” />
 </data_dataform:DataField>
 <Rectangle Style=”{StaticResource RectangleThickStyle}” />
 </StackPanel>
 </DataTemplate>
 </data_dataform:DataForm.EditTemplate>
 </data_dataform:DataForm>
</UserControl>

In the code behind for the CustomFood control, the DataForm will take care of validating the user-
supplied data using the validation rules that were added to the food metadata file earlier. When the

534045c05.indd 229 3/13/10 4:52:03 PM

230 ❘ ChaPter 5 One MOre Slice can’t Hurt

user is finished entering the food and nutrient details, you will need to handle the EditEnded event
of the DataForm with the following code:

private void CustomFoodForm_EditEnded(object sender, DataFormEditEndedEventArgs e)
{
 if (e.EditAction == DataFormEditAction.Cancel && CustomFoodCanceled != null)
 CustomFoodCanceled(this, null);
 else
 {
 if (CustomFoodForm.ValidateItem())
 {
 // If validation succeeds then add the food to the database

 foodContext.Foods.Add(CustomFoodForm.CurrentItem as
FitnessTrackerPlus.Web.Data.Food);
 foodContext.SubmitChanges((FoodSubmitted) =>
 {
 if (!FoodSubmitted.HasError && CustomFoodCreated != null)
 {
 CustomFoodCreated(this, new
CustomFoodCreatedEventArgs(CustomFoodForm.CurrentItem as
FitnessTrackerPlus.Web.Data.Food));
 }

 }, null);
 }
 }
}

Code snippet CustomFood.xaml.cs

There isn’t really much to this code. You first need to ensure that when the event handler is reached
it’s not because the user decided to cancel the edit operation. Next, you should perform a call to
ValidateItem that tells the DataForm to perform validation against the custom food object using
the validation attributes set in the metadata file. Finally, you should add the new custom food to the
Foods entity list; a call to SubmitChanges ensures that the new Food object is stored in the data-
base. Once this operation is complete, however, you should also assume that your users expect that
a corresponding food log entry is created in this same operation. After all, the only reason they’re
creating the custom food is to add a new food log entry. For this reason, you need to create a new
custom event that fires from the CustomFood class and signifies the custom food creation is complete
and the parent control can safely create a new FoodLogEntry item using the new custom food infor-
mation. This is done by firing a CustomFoodCreated event to the parent control.

Creating the custom event and associated delegate is simple enough. First you add a public event and
delegate signature to the CustomFood class like this:

public delegate void CustomFoodCreatedEventHandler(object sender,
CustomFoodCreatedEventArgs e);
public event CustomFoodCreatedEventHandler CustomFoodCreated;

Code snippet CustomFood.xaml.cs

534045c05.indd 230 3/13/10 4:52:03 PM

Solution ❘ 231

Then, in the same file but below the CustomFood class, you add the following
CustomFoodCreatedEventArgs class:

public class CustomFoodCreatedEventArgs
{
 private FitnessTrackerPlus.Web.Data.Food custom_food = null;

 public CustomFoodCreatedEventArgs() { }
 public CustomFoodCreatedEventArgs(FitnessTrackerPlus.Web.Data.Food
custom_food)
 {
 this.custom_food = custom_food;
 }

 public FitnessTrackerPlus.Web.Data.Food CreatedFood
 {
 get {
 return custom_food;
 }
 }
}

Code snippet CustomFood.xaml.cs

The only item that is relevant to the listeners of this event is the custom food object that was created
so you have a public property called CreatedFood that listeners can use in order to add a new food
log entry using the food. What about if the user cancels the operation? Well, because no custom
food will have been created in this case, you can get away with a very simple public event that uses
the standard EventHandler signature like this:

public event EventHandler CustomFoodCanceled;

Code snippet CustomFood.xaml.cs

Looking back at the Click event handler for the custom food Button on the main FoodLog page,
you now should be handling the creation of the CustomFood dialog as well as creating the new
FoodLogEntry. The following is the Click event handler for the custom food Button control:

private void CustomFood_Click(object sender, RoutedEventArgs e)
{
 ChildWindow modalWindow = new ChildWindow();
 CustomFood customFood = new CustomFood();

 customFood.CustomFoodCanceled += (s, ev) => { modalWindow.Close(); };
 customFood.CustomFoodCreated += (s, ev) =>
 {
 CreateFoodLogEntry(ev.CreatedFood);
 modalWindow.Close();
 };

 modalWindow.Title = “Add Custom Food”;
 modalWindow.Content = customFood;
 modalWindow.Show();
}

Code snippet FoodLog.xaml.cs

534045c05.indd 231 3/13/10 4:52:04 PM

232 ❘ ChaPter 5 One MOre Slice can’t Hurt

As you can see, if the custom food is created, you simply create a new FoodLogEntry using the
CreatedFood property of the CustomFoodCreatedEventArgs variable. However, if the user cancels
the operation, you just close the modal dialog window. Figure 5-11 shows the CustomFood control
in action.

FigUre 5-11

sUmmary

You finally have a fully functional piece of the application that solves one of the major require-
ments of the site. In this chapter, you have seen step by step how to combine the GlobalCalendar,
AutoCompleteBox, DataForm, and DataGrid controls to create a powerful and rich data entry
screen. You have also seen how easy it is to add a middle-tier implementation that combines LINQ
to SQL and the WCF RIA Services Framework. I hope that after completing this chapter, you have
a really solid understanding of how to leverage all of these techniques in your own Rich Internet
Applications built in Silverlight. In addition to all of this, you have also seen some techniques for
customizing the out-of-the-box functionality of the DataGrid control to further enhance the user
interface. At this point in the book, you can even start keeping track of the foods that you eat on a
daily basis. You may be unfortunately surprised at just how many calories can get consumed during
any given software development session. Don’t worry though—after completing the next chapter,
you will have a working exercise log page so you will be able to see if you are successfully burning
all of those calories by typing thousands of lines of code.

534045c05.indd 232 3/13/10 4:52:04 PM

Time to Hit the Gym
Creating the Exercise Log

Thanks to the hard work you put in during the previous chapter, users of FitnessTrackerPlus
can now keep track of the foods they eat on a daily basis. Now you want to provide them with
an easy way to keep track of their exercise routines. Like the food log page you will need to
design a user interface that is conducive to logging exercises. This means that the controls used
for the food log page may not be the ones best suited for logging exercises. So you will need to
design the user interface accordingly.

The information that is logged when creating exercise log entries can vary depending on the type
of exercise performed. When logging cardio exercises, users will want to keep track of things
such as speed, distance, duration, and so on. However, when logging weight training exercises,
users will most likely only care about things such as total repetitions and weight of the exercise
performed. For this reason, you will be making use of separate DataGrid controls for each exer-
cise type when displaying entries.

You will see how to make use of the new DomainDataSource control included in the WCF RIA
Services Framework to coordinate operations between each of these DataGrid controls as well
as filtering the entries being displayed so that cardio exercises appear in one DataGrid and
weight training exercises appear in another. You will also see how to take advantage of the
grouping and sorting features of the DomainDataSource controls in order to make sure that
weight training exercise log entries are grouped according to their associated muscle group;
this makes it easier for users to plan workouts according to the muscle group that they are
working.

By the end of this chapter, you will be two-thirds of the way to providing all of the required
data entry pages to your users. After this, you’ll see how to take advantage of all this data to
provide users with powerful charting capabilities that will further help them to succeed in
achieving their fitness goals.

6

534045c06.indd 233 3/14/10 2:25:08 PM

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

234 ❘ Chapter 6 Time To HiT THe Gym

problem

Because no fitness program is complete without both a diet and exercise plan, users of
FitnessTrackerPlus will be expecting to keep track of any exercises that they perform on a daily
basis. The exercise log page will need to provide users with many of the same things that are pro-
vided by the food log page. As required for the food log page, users are expecting a fast, rich user
interface for adding exercise log entries. When creating the food log page, you provided users with
the ability to select from a fairly extensive list of default foods in order to assist in the data entry
process. You should count on providing a similar list of exercises for users on the exercise log page
as well. As with the food log page, if users cannot find the exercise they are looking for, you need to
provide them with a means to create and store custom exercises that they can add to the exercise log.

The main data entry control for the food log page was the AutoCompleteBox control. Users can add
new log entries only by searching for a matching food in this control or creating a custom food. For
the exercise log page, you need to think about whether or not this control should also be used on
this page as the main data entry mechanism. Although you will be providing a comprehensive list
of exercises that users can choose from, searching that list may not be the easiest way for users to
create new exercise log entries. You may want to see if another control such as the ComboBox would
be better suited for this scenario. This way, your users could potentially filter exercises by their type
such as cardio, weight training, and activities. After selecting an exercise type, another ComboBox
could be populated dynamically with a list of exercises matching that type. You may have already
seen a similar technique used on other websites such as Kelly Blue Book, where you will first select a
make, model, and finally a year while attempting to retrieve information about an automobile. This
cascading ComboBox technique can sometimes be a really quick data entry tool that works well when
your total list of items can be filtered and limited to a couple hundred entries as opposed to tens of
thousands, as is the case with the food searching mechanism.

An additional problem to be solved is that users will most likely expect to see their exercise log
entries grouped according to the type of exercise performed. You will probably want exercises to be
separated into three distinct types: cardio, weight training, and other activities. The data collected for
these three types of exercises will vary greatly. For example, a user who is entering a cardio exercise
such as treadmill running would probably expect to keep track of things such as distance, time, calo-
ries burned, and so on. A user who is entering a set of bench press exercises would probably expect
to log things such as reps and weight. This will present a challenge not only for the user interface but
also for the database table structure. You will have some important design decisions to make when
considering the database table structure, such as whether to use one table for all exercise log entries
or instead separate exercise log entries into their three distinct types and create individual exercise log
entry tables for each of those types.

Design

In the previous chapter, the first thing that was done in the “Design” section was to create a user
story that would assist in the creation of the page requirements. Because this can be such a helpful
tool user stories will be used to create the requirements list for both this exercise log page as well as
the measurements log page in the next chapter. As always, the design will be split out into the major
features that encompass the page and will be further broken down into the design discussions for
the user interface, database, data access, business logic, and user interface code behind. By now,

534045c06.indd 234 3/14/10 2:25:08 PM

Design ❘ 235

you should be pretty familiar with the formula being used throughout this book so let’s go ahead
and get started by creating a user story that simulates what the typical user may do when he or she
arrives at the exercise log page.

User stories
The following are a couple of user stories that should be helpful in creating a list of requirements for
the exercise log page. Ideally, both of these stories will be consistent with the behavior of real users
that are visiting the site to utilize this feature. As always, you aren’t concerned with writing hun-
dreds of these. You just want to try and come up with a scenario that accurately represents what the
typical user would expect to see entering exercises into their daily log.

New Exercise UserUser story

Tom has just started a new exercise regimen at the local gym. This isn’t the first time he has done this
but he hopes this is the last time. Instead of continuing on with the start/stop cycle of working out that
has plagued him in the last few years, he would like to make it part of his daily routine. In order to
ensure that he sticks to this regimen on a daily basis, he decides to keep a journal of the exercises he
performs each day. If this were 1986, he would run down to the local store and pick up one of those
handy spiral bound notebooks and write down every exercise he performs. Lucky for him, the Internet
exists and writing all of this information by hand is no longer necessary. He quickly hops on his com-
puter and searches Google for online fitness tracking programs. There on the first page of results he
notices FitnessTrackerPlus. After a simple registration process, he clicks on the exercise menu to be
presented with his daily exercise log. Now the hard part — how does he actually enter his exercises?
Today, he worked on shoulders so he notices a list of muscle groups and selects shoulders. After the
selection, all shoulder-related exercises appear in an adjacent list. Now he simply selects the first exer-
cise he performed and instantly the exercise is added to a table below. Well this seems easy enough so
he tries another exercise. Unfortunately, the exercise he is looking for does not appear to be available.
But he notices a custom exercise button on the same screen. After answering a few questions about the
custom exercise, he quickly saves the exercise to his list of custom exercises and the exercise he created
is added to the table. The best part is that now his custom exercise is available any time he visits the
site. Tom is impressed; the entire process took seconds instead of the minutes it would have taken him
to manually write all of the information down in his notebook. The entire process was quick and pain-
less, and it will no doubt become part of his new daily routine.

requirements
After taking a look at the user story, it’s time to come up with the detailed list of requirements for
the exercise log page. Of course, in addition to any requirements extracted from the user stories, you
also need to make sure that the requirements list covers any of the original problems outlined in the
problem section of the chapter.

Users should be able to view a list of exercises performed in a tabular format.➤➤

Exercises should be grouped in the exercise log based on the type of exercise being added to ➤➤

the log.

534045c06.indd 235 3/14/10 2:25:08 PM

236 ❘ Chapter 6 Time To HiT THe Gym

There should be three major types of exercises: Cardio, Weight Training, and Activity.➤➤

All exercises should fall under one of those major categories.➤➤

Weight training exercises should be grouped in the log according to the associated muscle type.➤➤

Users should be able to select exercises by first selecting an exercise type filter, followed by ➤➤

the list of exercises themselves.

As soon as a selection is made, a new exercise log entry should be created containing the ➤➤

selected exercise.

Users should be able to create custom exercises when they cannot find an appropriate match ➤➤

in the default list of exercises.

Users will need the ability to view past, present, and future log entries.➤➤

Users should be able to create, read, update, and delete any log entries.➤➤

Once again, users should have access to a right-click menu in order to delete selected entries.➤➤

It shouldn’t be much of a surprise that many of the requirements listed match the ones created dur-
ing the food log design. Users will still need the same basic data entry functions that were designed
in the food log and, in fact, you should expect to see similar requirements in the coverage of the
measurements log next chapter. Now that the requirements are complete, let’s take a look at the most
important component of this chapter, which of course is the exercise log page.

exercise log
Thanks to the user story created, you now have a complete list of requirements to base the design
off of. The design discussion will begin as usual with a look at the proposed user interface for the
exercise log page. Remember, above all, that the goal of this page is to provide a quick and painless
data entry experience for your users, so you need to make sure to choose the right Silverlight controls
for the job.

User Interface

The user interface for the exercise log page will be strikingly similar to the food log page. As in the
food log page, newly created entries should appear in a DataGrid control. In addition to this, you
will also need to provide a way for users to browse for exercises by exercise type and potentially
muscle group. The design is calling for a cascading ComboBox type of solution similar to the ones
found on automobile sites such as Kelly Blue Book or CarMax. These solutions involve ComboBox
controls where the contents depend on the previously made selection. For example, you will pro-
vide a ComboBox for choosing one of the available exercise types such as cardio, weight training, or
activities. If the user selects cardio or activities, then the next ComboBox will be filled with exercises
that belong to the selected exercise type. If the user selects weight training, you will need to dynami-
cally display an additional ComboBox so that the users can filter the exercise list based on a selected
muscle group. In addition to the ComboBox controls, you will need to add a Button control alongside
the ComboBox controls that will display a custom exercise creation form. This will be done in case

534045c06.indd 236 3/14/10 2:25:08 PM

Design ❘ 237

the users cannot find the exercise they wish to log in the default exercise list provided. Once the user
finishes entering information related to the custom exercise, a new exercise log entry should be cre-
ated using the exercise and it should be added to the appropriate DataGrid depending on what type
of exercise it is.

When designing the food log page, you need only one DataGrid to hold food log entries. The exer-
cise log page will require something slightly different. Because there are three distinct exercise types,
you will want to group exercises by their associated type. This will require not one but three sepa-
rate DataGrid controls to be used on the page. You will have a separate DataGrid for cardio, weight
training, and activities.

You might be wondering why you can’t just have them all in one DataGrid and use the new group-
ing capabilities of the DataGrid control to combine exercises by their type. You could do this but
when you think about the columns that will be required for the various exercises, it can start to
get complicated. For example cardio log entries will need to store things such as time, distance,
level, and so on. Weight training exercises will need to store weight and reps, which of course have
no real association with cardio exercises. This type of decision can be a difficult one, but it really
boils down to whether or not you want to display all possible columns and have null values be dis-
played where there is no association. I felt that it could be confusing to the user to have to look at
the DataGrid and see five or six empty columns for weight training exercises. With that out of the
way, let’s take a quick look at what design elements are needed in order to get this page working.
Figure 6-1 shows the potential user interface for the exercise log page.

Activity Log Entries

Weight Training Log Entries

Cardio Log Entries

Global Calendar

Exercise Types Muscle Groups Exercises

Custom Exercises

FigUre 6-1

534045c06.indd 237 3/14/10 2:25:09 PM

238 ❘ Chapter 6 Time To HiT THe Gym

Database

Several new database tables are required for the exercise log page. You will need tables to hold exer-
cise types, muscle groups, exercises, exercise-to-muscle-group associations, and exercise log entries.
Table 6-1 shows the schema for the exercise_types table.

table 6-1: exercise_types

ColUmn name type DesCription

id int Unique identity field for type

type_name varchar(50) Name of exercise type; only three will be available (cardio, weight

training, and activity)

The muscle_groups table (Table 6-2) will contain all of the available muscle groups. You won’t be
allowing users to add to this table so it will contain only the following entries: abs, arms, back,
chest, legs, neck, and shoulders.

table 6-2: muscle_groups

ColUmn name type DesCription

id int Unique identity field for muscle group

group_name varchar(50) Name of muscle group (abs, arms, back, chest, legs, neck,

shoulders)

Now you will need a place to store the actual exercise information. The exercises table (Table 6-3)
will hold all of the default exercises as well as any custom exercises created by the users.

table 6-3: exercises

ColUmn name type DesCription

id int Unique identity field for exercise

exercise_name varchar(100) Name of exercise

exercise_type int ID of associated exercise type

user_id int ID of associated user

For any weight training exercise, there should be an association to one of the existing muscle
groups. The exercises_muscle_groups join table (Table 6-4) will provide this association.

534045c06.indd 238 3/14/10 2:25:09 PM

Design ❘ 239

table 6-4: exercises_muscle_groups

ColUmn name type DesCription

id int Unique identity field for association

muscle_group_id int ID of associated muscle group

exercise_id int ID of associated weight training exercise

Even though you will be displaying the exercise log entries in three separate DataGrid controls,
you do not necessarily have to store them in three separate database tables. Regardless of exercise
type, all entries will share id, exercise_id, user_id, duration, calories, time, and entry_date columns.
Therefore, from a database storage perspective, it doesn’t really make much sense to duplicate these
columns across multiple tables. Not to mention the added difficulty you would have when writing
the business logic as you would have to ensure that entries were added and deleted from the correct
tables. Separating the exercise log entries by exercise type makes sense from a user interface perspec-
tive, but it doesn’t really make sense on the database side. In the following exercise_logs table, you
may have NULL column values for reps, and weight when a cardio exercise is entered but that still
ultimately will cost less than duplicating the columns that are shared across three separate database
tables. The savings in business logic implementation alone is probably worth the use of one table
(Table 6-5) for this.

table 6-5: exercise_logs

ColUmn name type DesCription

id int Unique identity field for entry

exercise_id int ID of associated exercise

user_id int ID of associated user

duration datetime Length of time exercise is performed

calories int Calories burned during exercise

distance float Distance traveled

incline float Incline used, typically found on cardio machines

speed float Speed that exercise was performed, used for cardio exercises

reps smallint Total number of repetitions performed for weight training exercise

weight smallint Total weight used while performing weight training exercise

entry_date datetime Date of exercise log entry

534045c06.indd 239 3/14/10 2:25:09 PM

240 ❘ Chapter 6 Time To HiT THe Gym

Data Access

The data access code will be very similar to the food log page in that you will need to create LINQ
to SQL classes for each of the database tables being used in the exercise log page design. Once again,
you should be able to achieve this using just one new LINQ to SQL class file containing all of the
relevant tables. It really is nice to not have to spend countless hours creating data access classes, now
isn’t it? Go ahead — you can admit that you no longer miss doing this.

Business Logic

As in the food log page, the business logic needs to consist of a new DomainService class called
ExerciseService. When creating this service you should note that some of the entities added
to the LINQ to SQL classes file may not need to have editing enabled. For example, it is unlikely
that you will want to allow for editing of muscle groups, exercise types, or the exercise-to-muscle-
group relationships. When you create a new DomainService, you are always given the option
to pick and choose which entities should be enabled for updating. If you don’t specifically select
the editing checkbox when the wizard is displayed, then the code generator will only add, create,
and delete methods to the generated DomainService. This prevents you from enabling callers of
the service with the ability to modify entities that are Read-Only in nature. After creating the
ExerciseService, you should ultimately be left with the methods shown in Table 6-6, available
to the Silverlight client:

table 6-6: Available Methods

methoD DesCription

GetExercisesByType Should retrieve all exercises for the given exercise type

GetExercisesByMuscleGroup Should retrieve all weight training exercises for the given

 muscle group

InsertExercise Creates a new custom exercise in the database

GetExerciseLogEntries Retrieves all exercise log entries for the given date and user

InsertExerciseLogEntry Creates a new exercise log entry in the database

UpdateExerciseLogEntry Updates the specified exercise log entry

DeleteExerciseLogEntry Removes the specified exercise log entry from the database

GetExerciseTypes Retrieves a list of valid exercise types

GetMuscleGroups Retrieves a list of valid muscle groups

User Interface Code Behind

In the user interface code behind you will need to accomplish several things. First, you will need
to retrieve the list of exercise types so that you can populate the first of the cascading ComboBox

534045c06.indd 240 3/14/10 2:25:09 PM

Solution ❘ 241

controls. Once a selection is made from that control, you will need an event handler to either
retrieve the exercises for the selected exercise type, or you will need to display the ComboBox con-
taining the list of available muscle groups. In theory, because you know in advance exactly which
exercise types and muscle groups exist in the database, you could hard code the list in the XAML.
I suggest retrieving the data from the database and using data binding anyway because you never
know when you may decide to add a new exercise type or muscle group into the application.

After you’ve provided users with a cascading ComboBox setup, they should be able to select
an exercise type followed by a specific exercise. You will need an event handler to handle the
ComboBox SelectionChanged event so that a new exercise log entry will be created and displayed.
Speaking of the exercise log entries, you know from the requirements that there need to be multiple
DataGrid controls on the page to handle the display of the log entries. There should be a DataGrid
for cardio, weight training, and activities. Ideally you should be able to set the ItemsSource prop-
erty of each DataGrid to the same collection of data while adding a filter mechanism so that each
DataGrid shows only the appropriate exercise type. Of course, this also has some implications for the
delete logic. Because you have three separate DataGrid controls, you will need to make sure that all
three are checked for selected items before applying the delete logic in the Delete button’s Click event
handler. Because you have only one database table for all exercise log entries you will need to set the
ItemsSource property of each DataGrid control to different collections of data.

Supporting custom exercise creation will be very similar to the work you just finished in the previ-
ous chapter. You will need to handle the Click event of the custom food button and display a modal
ChildWindow containing the data entry form for custom food creation. You should have fields for
the exercise name, type, and if the user selects weight training as the exercise type, muscle group.
The muscle group selection should appear only if the user creates a new weight training exercise.
Otherwise, it should remain hidden on the DataForm.

Just as you planned in the food log page, you will also need to handle the Calendar control’s
SelectedDateChanged event and make sure that you display exercise log entries for the selected
date while storing the newly selected date in the Globals class for other pages to make use of. Any
DataGrid events related to in-place editing and row deletion will need to be implemented as they
were in the food log page as well. One major difference in the delete handler for this page is that you
will need to loop through all of the entries in each of the three DataGrid controls to build a list of
entries to delete.

solUtion

Now that you have completed the design of the exercise log page, it’s once again time to take a look
at the implementation of the required features. This section of the chapter covers creating cascad-
ing ComboBox controls, handling multiple DataGrid controls, and using data binding techniques
with the new DomainDataSource control from the WCF RIA Services Framework. As always, even
though the techniques being demonstrated here are designed for the FitnessTrackerPlus application,
you should be able to take what you learn in this section and easily apply it to your own Silverlight-
based solutions.

534045c06.indd 241 3/14/10 2:25:10 PM

242 ❘ Chapter 6 Time To HiT THe Gym

The main feature being implemented in this chapter is the exercise log page. Users will visit this page
to enter any exercises performed on a given day. The design of this page calls for the primary data
entry tasks to be performed through the use of ComboBox controls. Users will be expected to utilize
the ComboBox controls to find a matching exercise. After a selection is made, a new entry is added to
the log. As was the case with the food log page, if users cannot find an accurate matching exercise
they always have the option of creating a custom exercise and adding that custom exercise to their
log. Like the food log page, users will be expected to quickly add all of the exercises performed and
then go back to the entries to make updates to any additional information that is related to those
exercises. The solution, as always, is broken down into discussions centering on the user interface,
database, data access, business logic, and finally the user interface code behind page.

User interface
The user interface for this page will begin with the same DockPanel container structure that was
used when creating the food log page. This structure keeps the data entry controls toward the top
of the page with the GlobalCalendar docked at the top right of the page. All the DataGrid controls
will reside at the end of the DockPanel declaration and make use of the LastChildFill property
on the DockPanel to ensure that the DataGrid area utilizes all of the available screen space. Once
again, by making use of the DockPanel along with the LastChildFill property you will ensure
that the DataGrid area will stretch to fill all the remaining screen real estate, even if the browser
window is resized. The best part is that no complicated JavaScript code is required to get this
working.

Control Layout

The following code shows the DockPanel container structure and overall layout of the exercise log
page user interface:

<Style x:Key=”LogDockPanelStyle” TargetType=”toolkit:DockPanel”>
 <Setter Property=”LastChildFill” Value=”True” />
</Style>

<toolkit:DockPanel Style=”{StaticResource LogDockPanelStyle}”>
 <toolkit:DockPanel Style=”{StaticResource HeaderDockPanelStyle}”>
 <TextBlock Style=”{StaticResource ExerciseLogHeaderStyle}” />
 <TextBlock x:Name=”SelectedDate” Style=”{StaticResource
SelectedDateTextStyle}” />
 <ProgressBar x:Name=”ProgressBar” Style=”{StaticResource
ProgressBarStyle}” />
 </toolkit:DockPanel>
 <StackPanel Style=”{StaticResource CalendarPanelStyle}”>
 <toolkit:GlobalCalendar. . .>
 </StackPanel>
 <StackPanel Style=”{StaticResource LogPanelStyle}”>
 </StackPanel>
</toolkit:DockPanel>

Code snippet ExerciseLog.xaml

534045c06.indd 242 3/14/10 2:25:10 PM

Solution ❘ 243

Because you have already seen the GlobalCalendar XAML declaration in the previous chapter, I
went ahead and collapsed the declaration in the container. Everything will work the same way for
the exercise log page as it did for the food log page regarding the GlobalCalendar and the custom
styles that are applied to valid log dates.

At this point, you should have the DockPanel container set up along with the GlobalCalendar,
header text, ProgressBar control, and a horizontal StackPanel that will host the required ComboBox
controls being used for the data entry. Speaking of the ComboBox controls, now would be a great
time to add those to the user interface. You will need a total of three controls, one each to host the
exercise types, muscle groups, and exercises. As you can see in the following code, the muscle group
and exercise ComboBox controls are hidden by default. These three ComboBox controls will make up
the cascading behavior that is required in this chapter.

<Style x:Key=”ExerciseEntryComboBoxStyle” TargetType=”ComboBox”>
 <Setter Property=”Margin” Value=”0,0,10,0” />
 <Setter Property=”Height” Value=”20” />
</Style>

<Style x:Key=”ExerciseEntryHiddenComboBoxStyle” BasedOn=”{StaticResource
ExerciseEntryComboBoxStyle}” TargetType=”ComboBox”>
 <Setter Property=”Visibility” Value=”Collapsed” />
</Style>

<StackPanel Style=”{StaticResource LogPanelStyle}”>
 <StackPanel Style=”{StaticResource ExerciseEntryStackPanelStyle}”>
 <ComboBox x:Name=”ExerciseTypes” Style=”{StaticResource
ExerciseEntryComboBoxStyle}” DisplayMemberPath=”type_name” />
 <ComboBox x:Name=”MuscleGroups” Style=”{StaticResource
ExerciseEntryHiddenComboBoxStyle}” DisplayMemberPath=”group_name” />
 <ComboBox x:Name=”Exercises” Style=”{StaticResource
ExerciseEntryHiddenComboBoxStyle}” DisplayMemberPath=”exercise_name” />
 <Button x:Name=”CustomExercise” Style=”{StaticResource
CustomExerciseButtonStyle}” />
</StackPanel>

Code snippet ExerciseLog.xaml

In the preceding code, the user will need to select an exercise type from the only ComboBox that is
visible by default. If the user selects weight training then the muscle groups ComboBox will be made
visible. At this point, the user will need to select from one of the default muscle groups. Once a
selection is made, the exercises that match the selected muscle group will be loaded into the third
ComboBox and that control will be made visible as well. Now if the user happens to select a cardio
or activity exercise type, then the muscle groups ComboBox will remain hidden and the exercises
ComboBox will be made visible and loaded with exercises that match the selected exercise type. In
either case, once the user makes a selection from the exercise’s ComboBox control, a new exercise
log entry will be created using the selected exercise.

534045c06.indd 243 3/14/10 2:25:11 PM

244 ❘ Chapter 6 Time To HiT THe Gym

DataGrids for Each Exercise Type

In addition to the ComboBox controls, the design calls for separate DataGrid controls for each of the
three possible exercise types. This means that you should have a DataGrid to display exercise log
entries for cardio entries, weight training entries, and other activities.

Cardio grid:➤➤ The first DataGrid control added to the page is the cardio grid. The purpose of
this DataGrid is to display only the exercise log entries that are associated with cardio exer-
cises. The following XAML code shows the cardio grid declaration added to the exercise
log page:

<data:DataGrid x:Name=”CardioLogGrid” Style=”{StaticResource DataGrid}”
 ItemsSource=”{Binding Path=Data, ElementName=CardioData}” >
 <data:DataGrid.Columns>
 <data:DataGridTemplateColumn Header=”Cardio”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=Exercise.exercise_name}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Duration”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=duration,
StringFormat=’HH:mm:ss’}” Style=”{StaticResource
DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 <data:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <toolkit_input:TimePicker x:Name=”Duration”
Value=”{Binding Path=duration, Mode=TwoWay}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellEditingTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Calories”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=calories}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 <data:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <TextBox Text=”{Binding Path=calories,
Mode=TwoWay}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellEditingTemplate>

534045c06.indd 244 3/14/10 2:25:11 PM

Solution ❘ 245

 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Distance”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=distance}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 <data:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <TextBox Text=”{Binding Path=distance,
Mode=TwoWay}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellEditingTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Incline”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=incline}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 <data:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <TextBox Text=”{Binding Path=incline,
Mode=TwoWay}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellEditingTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn HeaderStyle=”{StaticResource
DataGridColumnHeaderCheckBox}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <CheckBox x:Name=”DeleteEntry”
Style=”{StaticResource DataGridCheckBox}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
</data:DataGrid>

Code snippet ExerciseLog.xaml

Weight training grid:➤➤ The next DataGrid to include in the page is the weight training grid.
Only exercise log entries marked as weight training should appear in this grid. As you can see
in the following XAML code, the weight training grid needs only a couple of custom column
definitions for time, exercise name, reps, and weight:

<data:DataGrid x:Name=”WeightTrainingLogGrid” Style=”{StaticResource
DataGrid}” ItemsSource=”{Binding Path=Data,
ElementName=WeightTrainingData}”>

534045c06.indd 245 3/14/10 2:25:11 PM

246 ❘ Chapter 6 Time To HiT THe Gym

 <data:DataGrid.Columns>
 <data:DataGridTemplateColumn Header=”Weight Training”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=Exercise.exercise_name}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Reps”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=reps}”
Style=”{StaticResource DataGridTextBlock}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 <data:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <TextBox Text=”{Binding Path=reps,
Mode=TwoWay}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellEditingTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Weight”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=weight}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 <data:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <TextBox Text=”{Binding Path=weight,
Mode=TwoWay}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellEditingTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn HeaderStyle=”{StaticResource
DataGridColumnHeaderCheckBox}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <CheckBox x:Name=”DeleteEntry”
Style=”{StaticResource DataGridCheckBox}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
</data:DataGrid>

Code snippet ExerciseLog.xaml

534045c06.indd 246 3/14/10 2:25:11 PM

Solution ❘ 247

Activities grid:➤➤ The final DataGrid to add to the page is the activities grid. All exercises that
are not marked as cardio or weight training will appear here. This includes any sports, daily
activities, group exercise, and so on. The following is the XAML code for this final DataGrid
control:

<data:DataGrid x:Name=”ActivityLogGrid” Style=”{StaticResource DataGrid}”
ItemsSource=”{Binding Path=Data, ElementName=ActivityData}”>
 <data:DataGrid.Columns>
 <data:DataGridTemplateColumn Header=”Activities”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=Exercise.exercise_name}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Duration”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=duration,
Converter={StaticResource DurationConverter}}” Style=”{StaticResource
DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 <data:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <toolkit_input:TimePicker x:Name=”Duration”
Value=”{Binding Path=duration, Mode=TwoWay, Converter={StaticResource
DurationConverter}}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellEditingTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Calories”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=calories}”
Style=”{StaticResource DataGridTextBlock}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 <data:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <TextBox Text=”{Binding Path=calories,
Mode=TwoWay}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellEditingTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn HeaderStyle=”{StaticResource
DataGridColumnHeaderCheckBox}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>

534045c06.indd 247 3/14/10 2:25:11 PM

248 ❘ Chapter 6 Time To HiT THe Gym

 <CheckBox x:Name=”DeleteEntry”
Style=”{StaticResource DataGridCheckBox}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
</data:DataGrid>

Code snippet ExerciseLog.xaml available

Using the DomainDataSource Control

With the DataGrid controls added to the page, you have to make a decision about the data binding
implementation being used here. In the previous page, all the data binding logic was taken care of
in the code behind using a DomainContext object directly. Although you could potentially imple-
ment the data binding here using the DomainContext directly, you would need to add quite a bit of
custom code to filter the DataGrid controls appropriately so that they display the appropriate entries
based on the type of exercise being logged.

Instead of going down that road, I am going to introduce you to a new control that is included with
the WCF RIA Services Framework that makes for a much smoother implementation requiring mini-
mal code in the code behind and providing built-in support for filtering, paging, sorting, and group-
ing. This new control is the DomainDataSource control, and it is one of the coolest new features
of the WCF RIA Services Framework. ASP.NET developers have always had a wide array of data
controls that could be used in ASP.NET pages to perform data binding functionality declaratively
and with little code in the code behind page required. Most of these controls even provided built-
in support for CRUD operations on data objects. With the DomainDataSource control, Silverlight
developers finally have a similar solution to the traditional ASP.NET data binding controls. To get
started with the DomainDataSource, you first need to add the following namespace declarations at
the top of the exercise log page:

xmlns:ria_controls=”clr-
 namespace:System.Windows.Controls;assembly=System.Windows.Controls.Ria”
xmlns:ria_data=”clr-
 namespace:System.Windows.Data;assembly=System.Windows.Controls.Ria”

Code snippet ExerciseLog.xaml

You then should add a DomainDataSource control just below each of the DataGrid controls that
were defined earlier, leaving you with this XAML code:

<data:DataGrid x:Name=”CardioLogGrid” .>
<ria_controls:DomainDataSource x:Name=”CardioData”
</ria_controls:DomainDataSource>

<data:DataGrid x:Name=”WeightTrainingLogGrid” .>
<ria_controls:DomainDataSource x:Name=”WeightTrainingData”
</ria_controls:DomainDataSource>

534045c06.indd 248 3/14/10 2:25:12 PM

Solution ❘ 249

<data:DataGrid x:Name=”ActivityLogGrid” .>
<ria_controls:DomainDataSource x:Name=”ActivityData”
</ria_controls:DomainDataSource>

Code snippet ExerciseLog.xaml

After adding the DomainDataSource controls below each of the DataGrid controls, you now need to
tell the control how to load the required data. The DomainDataSource relies on using an underlying
DomainContext object that you include in the XAML declaration, as shown in the following code:

<ria_controls:DomainDataSource x:Name=”CardioData”
 <ria_controls:DomainDataSource.DomainContext>
 <fitnesstrackerplus:ExerciseContext />
 </ria_controls:DomainDataSource.DomainContext>
</ria_controls:DomainDataSource>

<ria_controls:DomainDataSource x:Name=”WeightTrainingData”
 <ria_controls:DomainDataSource.DomainContext>
 <fitnesstrackerplus:ExerciseContext />
 </ria_controls:DomainDataSource.DomainContext>
</ria_controls:DomainDataSource>

<ria_controls:DomainDataSource x:Name=”ActivityData”
 <ria_controls:DomainDataSource.DomainContext>
 <fitnesstrackerplus:ExerciseContext />
 </ria_controls:DomainDataSource.DomainContext>
</ria_controls:DomainDataSource>

Code snippet ExerciseLog.xaml

Now the DomainDataSource will instantiate a new ExerciseContext instance when the page is
loaded. In addition to the DomainContext, you also need to specify the method that will be used
to load the DomainContext. In this case, you want to assign the GetExerciseLogEntries as the
QueryMethod:

<ria_controls:DomainDataSource x:Name=”CardioData”
QueryName=”GetExerciseLogEntries” AutoLoad=”True”
 <ria_controls:DomainDataSource.DomainContext>
 <fitnesstrackerplus:ExerciseContext />
 </ria_controls:DomainDataSource.DomainContext>
</ria_controls:DomainDataSource>

<ria_controls:DomainDataSource x:Name=”WeightTrainingData”
QueryName=”GetExerciseLogEntries” AutoLoad=”True”
 <ria_controls:DomainDataSource.DomainContext>
 <fitnesstrackerplus:ExerciseContext />
 </ria_controls:DomainDataSource.DomainContext>
</ria_controls:DomainDataSource>

<ria_controls:DomainDataSource x:Name=”ActivityData”
QueryName=”GetExerciseLogEntries” AutoLoad=”True”
 <ria_controls:DomainDataSource.DomainContext>

534045c06.indd 249 3/14/10 2:25:12 PM

250 ❘ Chapter 6 Time To HiT THe Gym

 <fitnesstrackerplus:ExerciseContext />
 </ria_controls:DomainDataSource.DomainContext>
</ria_controls:DomainDataSource>

Code snippet ExerciseLog.xaml

By setting AutoLoad to true, the DomainDataSource will go ahead and perform the query automati-
cally and load the requested entities into the underlying DomainContext when the page is loaded.
With the DomainDataSource declaration complete you then need to modify the DataGrid controls
to ensure that the ItemsSource property is bound to the data loaded by the DomainDataSource
with the following code:

<data:DataGrid x:Name=”CardioLogGrid” ItemsSource=”{Binding Path=Data,
 ElementName=CardioData}”>

<data:DataGrid x:Name=”WeightTrainingLogGrid” ItemsSource=”{Binding Path=Data,
 ElementName=WeightTrainingData}”>

<data:DataGrid x:Name=”ActivityLogGrid” ItemsSource=”{Binding Path=Data,
 ElementName=ActivityData}”>

Code snippet ExerciseLog.xaml

If the GetExerciseLogEntries method required no additional parameters, your work would be
complete and loading the page would result in all three DataGrid controls being loaded with data
from the DomainDataSource. In reality, because the GetExerciseLogEntries method actually
requires both the ID of the current user and the entry date, the specified query method will fail.
That being said, it would appear that there is still some additional work to complete in order to get
this working for your solution. Let’s start by taking a quick look at how the DomainContext is used
in each of these DomainDataSource controls. Right now, each control has its own DomainContext
defined. Because all three will effectively be loading data from the same table but filtering according
to the requirements, you should be able to share a common DomainContext object across all three
of the DomainDataSource controls. In order to do this, you need to add a new ExerciseContext to
the Page.Resources section at the top of the page.

<navigation:Page.Resources>
 <fitnesstrackerplus:ExerciseContext x:Key=”ExerciseContext” />
</navigation:Page.Resources>

Code snippet ExerciseLog.xaml

Next you need to modify all three DomainDataSource controls to point to this ExerciseContext
instance in the XAML code:

<ria_controls:DomainDataSource x:Name=”CardioData”
 QueryName=”GetExerciseLogEntries” AutoLoad=”True”
 DomainContext=”{StaticResource ExerciseContext}”
</ria_controls:DomainDataSource>

<ria_controls:DomainDataSource x:Name=”WeightTrainingData”

534045c06.indd 250 3/14/10 2:25:12 PM

Solution ❘ 251

 QueryName=”GetExerciseLogEntries” AutoLoad=”True”
 DomainContext=”{StaticResource ExerciseContext}”
</ria_controls:DomainDataSource>

<ria_controls:DomainDataSource x:Name=”ActivityData”
 QueryName=”GetExerciseLogEntries” AutoLoad=”True”
 DomainContext=”{StaticResource ExerciseContext}”
</ria_controls:DomainDataSource>

Code snippet ExerciseLog.xaml

By doing this, you ensure that all three controls will bind to the same ExerciseContext instance.
Now you just need to configure the required parameters for the specified query method and
set up the filtering so that each DataGrid displays only the exercise log entries for the specified
exercise type. Configuring the DomainDataSource control to make use of custom parameters is
not terribly difficult. The control can support custom parameters in the form of a Parameter or
ControlParameter declaration. The entry date parameter is changed anytime a user selects a new
date from the GlobalCalendar control. When a selection is made, you should refresh all of the
DataGrid data to reflect the date chosen. This is a perfect candidate for a ControlParameter.
All it takes is to add the QueryParameters declaration along with a new ControlParameter that
assigns the SelectedDate property of the GlobalCalendar to the entry_date parameter of the
GetExerciseLogEntries method. The ControlParameter also includes a RefreshDataEvent
property that tells the DomainDataSource to reload its data when the specified control event is fired;
in this case it would be the SelectedDatesChanged event on the GlobalCalendar control. Here is
the XAML code for the ControlParameter:

<ria_controls:DomainDataSource x:Name=”CardioData”
 QueryName=”GetExerciseLogEntries” AutoLoad=”True”
 DomainContext=”{StaticResource ExerciseContext}”
<ria_controls:DomainDataSource.QueryParameters>
 <ria_control:ControlParameter ParameterName=”entry_date”
ControlName=”Calendar” PropertyName=”SelectedDate”
RefreshEventName=”SelectedDatesChanged” />
 </ria_controls:DomainDataSource.QueryParameters>
</ria_controls:DomainDataSource>

<ria_controls:DomainDataSource x:Name=”WeightTrainingData”
 QueryName=”GetExerciseLogEntries” AutoLoad=”True”
 DomainContext=”{StaticResource ExerciseContext}”
 <ria_control:ControlParameter ParameterName=”entry_date”
ControlName=”Calendar” PropertyName=”SelectedDate”
RefreshEventName=”SelectedDatesChanged” />
 </ria_controls:DomainDataSource.QueryParameters>
</ria_controls:DomainDataSource>

<ria_controls:DomainDataSource x:Name=”ActivityData”
 QueryName=”GetExerciseLogEntries” AutoLoad=”True”
 DomainContext=”{StaticResource ExerciseContext}”
 <ria_control:ControlParameter ParameterName=”entry_date”

534045c06.indd 251 3/14/10 2:25:12 PM

252 ❘ Chapter 6 Time To HiT THe Gym

ControlName=”Calendar” PropertyName=”SelectedDate”
RefreshEventName=”SelectedDatesChanged” />
 </ria_controls:DomainDataSource.QueryParameters>
</ria_controls:DomainDataSource>

Code snippet ExerciseLog.xaml

Ordinarily I would hold off on discussing code behind logic until the coverage for that section.
However, I am making an exception in this case because I want you to completely understand
how to get the DomainDataSource control working correctly in this particular scenario. Although
the DomainDataSource control allows you to specify generic Parameter objects in the XAML,
you can’t really do that for the user_id parameter here. The user_id is available only from the
static Globals class and because it’s static, you won’t be able to declare an instance of it in the
UserControl.Resources section. It’s not really a big deal, however, as you can just as easily add
the parameter to the QueryParameters collection in the code behind, as shown here:

public partial class ExerciseLog: Page
{
 private ExerciseContext context = new ExerciseContext();

 public ExerciseLog()
 {
 InitializeComponent();

 Loaded += (s, e) =>
 {
 // Extract a copy of the shared
 // DomainContext from the Page.Resources

 context = this.Resources[“ExerciseContext”] as ExerciseContext;

 Parameter user_id = new Parameter();
 user_id.ParameterName = “user_id”;
 user_id.Value = Globals.CurrentUser.id;

 // Ensure that the user_id parameter is set for all
 // DomainDataSource controls before the query is executed

 CardioData.QueryParameters.Add(user_id);
 WeightTrainingData.QueryParameters.Add(user_id);
 ActivityData.QueryParameters.Add(user_id);

 };
 }
}

Code snippet ExerciseLog.xaml.cs

Once you add the new Parameter to the collection in the constructor, the call to GetExerciseLogEntries
will succeed and all three DataGrid controls will be loaded, although at this point they will all
contain the same exact data, just different column definitions. This, of course, is where the filtering

534045c06.indd 252 3/14/10 2:25:13 PM

Solution ❘ 253

feature of the DomainDataSource control comes in handy. Configuring the filtering feature is as
simple as adding FilterDescriptor declarations to the FilterDesecriptorCollection of the
DomainDataSource control. In most cases, you simply need to set the PropertyPath attribute to
the property being filtered, set the Value attribute to the value to compare against, and finally
set the Operator attribute to the one of the various comparison operators that is available. The
FilterDescriptor supports several comparison operators including Contains, IsEqualTo, and
IsGreaterThanOrEqualTo. The following code shows how each of the DomainDataSource controls
has been configured for filtering on the exercise log page:

<ria_controls:DomainDataSource x:Name=”CardioData”
 QueryName=”GetExerciseLogEntries” AutoLoad=”True”
 DomainContext=”{StaticResource ExerciseContext}”
<ria_controls:DomainDataSource.QueryParameters>
 <ria_control:ControlParameter ParameterName=”entry_date”
ControlName=”Calendar” PropertyName=”SelectedDate”
RefreshEventName=”SelectedDatesChanged” />
 </ria_controls:DomainDataSource.QueryParameters>
 <ria_controls:DomainDataSource.FilterDescriptors>
 <ria_data:FilterDescriptorCollection>
 <ria_data:FilterDescriptor
PropertyPath=”Exercise.ExerciseType.type_name” Operator=”IsEqualTo”
Value=”Cardio” />
 </ria_data:FilterDescriptorCollection>
 </ria_controls:DomainDataSource.FilterDescriptors>
</ria_controls:DomainDataSource>

<ria_controls:DomainDataSource x:Name=”WeightTrainingData”
 QueryName=”GetExerciseLogEntries” AutoLoad=”True”
 DomainContext=”{StaticResource ExerciseContext}”
 <ria_control:ControlParameter ParameterName=”entry_date”
ControlName=”Calendar” PropertyName=”SelectedDate”
RefreshEventName=”SelectedDatesChanged” />
 </ria_controls:DomainDataSource.QueryParameters>
 <ria_controls:DomainDataSource.FilterDescriptors>
 <ria_data:FilterDescriptorCollection>
 <ria_data:FilterDescriptor
PropertyPath=”Exercise.ExerciseType.type_name” Operator=”IsEqualTo”
Value=”Weight Training” />
 </ria_data:FilterDescriptorCollection>
 </ria_controls:DomainDataSource.FilterDescriptors>
</ria_controls:DomainDataSource>

<ria_controls:DomainDataSource x:Name=”ActivityData”
 QueryName=”GetExerciseLogEntries” AutoLoad=”True”
 DomainContext=”{StaticResource ExerciseContext}”
 <ria_control:ControlParameter ParameterName=”entry_date”
ControlName=”Calendar” PropertyName=”SelectedDate”
RefreshEventName=”SelectedDatesChanged” />
 </ria_controls:DomainDataSource.QueryParameters>
<ria_controls:DomainDataSource.FilterDescriptors>
 <ria_data:FilterDescriptorCollection>
 <ria_data:FilterDescriptor
PropertyPath=”Exercise.ExerciseType.type_name” Operator=”IsEqualTo”

534045c06.indd 253 3/14/10 2:25:13 PM

254 ❘ Chapter 6 Time To HiT THe Gym

Value=”Activity” />
 </ria_data:FilterDescriptorCollection>
 </ria_controls:DomainDataSource.FilterDescriptors>
</ria_controls:DomainDataSource>

Code snippet ExerciseLog.xaml

As you can see, each filter is set up to ensure that only the entries for the correct exercise type
will appear in the DataGrid control. The beauty of this solution is that because you are sharing
a DomainContext between all three of the controls, you don’t have to worry about coordinating
update and delete operations once you implement those features.

All the remaining elements of the user interface are basically the same as they were for the food log
page. The DataGrid controls will still be using the CheckBox column so that users can select multi-
ple rows when deleting entries. You will also still have a CheckBox control in the header of the delete
column that will perform the Select/Deselect All logic as well. As far as the “Delete selected entries”
Button control, when you get to the code behind everything should work the same way with the
exception that instead of looking for selected items in one DataGrid, you will need to check all of
the DataGrid controls before the call to SubmitChanges occurs.

Once all of the required controls are added to the user interface, you are left with the data entry
screen shown in Figure 6-2.

FigUre 6-2

534045c06.indd 254 3/14/10 2:25:13 PM

Solution ❘ 255

Database
The database design calls for the creation of the following new tables:

exercise_types, muscle_groups, exercises, exercises_muscle_groups, and finally exercise_logs.
The exercise_types table should be pre-populated with the available exercise types, as shown in
Table 6-7.

table 6-7: Exercise Types

iD type_name DesCription

1 Cardio Cardio Exercises

2 Weight Training Weight Training Exercises

3 Activities Additional Activities

In addition to populating the exercise_types table, you also need to provide a default list of supported
muscle groups. You won’t be allowing users to add to this list so it should be populated manually
and left alone. As you will see in the “Business Logic” section, you won’t even expose methods for
updating, inserting, or deleting from this or the exercise_types tables. These tables are basically being
used to store constant values for exercise types and muscle groups. Table 6-8 shows how the muscle_
groups table should be created.

table 6-8: Muscle Groups

iD groUp_name

1 Neck

2 Shoulders

3 Chest

4 Arms

5 Abs

6 Legs

7 Back

Finally, because users will expect to select from a list of existing exercises, you also need to populate
the exercises table. All you have to do is add a couple of hundred exercises to the table and that
should be sufficient. Did that get your attention? Don’t worry — I have already done that work and
included some sample exercises in the exercises table of the supplied MDF file for this chapter. I

534045c06.indd 255 3/14/10 2:25:13 PM

256 ❘ Chapter 6 Time To HiT THe Gym

have also added the appropriate entries in the
exercises_muscle_groups table that associates
the various weight training exercises with the
corresponding muscle group.

After creating the tables, you then need to set
up all of the required relationships, as shown in
Figure 6-3.

Data access
Just as you did with the food log page, you will
need to add another LINQ to SQL classes file
to the project in order to create the required
business objects for this page. To get this work-
ing, you should add a new LINQ to SQL classes
file to the Data folder of the ASP.NET project and
call it Exercises.dbml. Once the file is created,
you then need to drag all of the newly created
exercise tables onto the design surface, as shown
in Figure 6-4.

FigUre 6-3

FigUre 6-4

534045c06.indd 256 3/14/10 2:25:14 PM

Solution ❘ 257

Finally you should save and rebuild the ASP.NET
project in order to generate the required data access
entity classes.

business logic
The business logic for this page will require
the creation of a new DomainService called
ExerciseService. Now typically you have been
exposing all of the available entities and provid-
ing complete CRUD capabilities for them in the
domain services that you have created up to this
point. For the exercise service, however, there are
some tables that need only read access enabled
for the client with other operations disabled. For
example, the exercise_types and muscle_groups
tables are not expected to change, and users should
not be allowed to create, update, or delete from
either of these two tables. In order to restrict
these operations, you just need to ensure that the
“Enable editing” option is not selected for those
entities, as shown in Figure 6-5.

The ExerciseService Class

Let’s take a look at some important methods of the ExerciseService. When the exercise log page
loads, both the ExerciseTypes and MuscleGroups ComboBox controls need to be loaded with a list
of default exercise types and muscle groups to select from. The ExerciseService provides both a
GetExerciseTypes and GetMuscleGroups method, as shown in the following code, which will be
used by clients to populate their respective ComboBox controls:

public IQueryable<ExerciseType> GetExerciseTypes()
{
 List<ExerciseType> exerciseTypes =
this.DataContext.ExerciseTypes.ToList<ExerciseType>();
 exerciseTypes.Insert(0, new ExerciseType { id = -1,
type_name = “Please select an exercise type” });

 return exerciseTypes.AsQueryable<ExerciseType>();
}

public IQueryable<MuscleGroup> GetMuscleGroups()
{
 List<MuscleGroup> muscleGroups =
this.DataContext.MuscleGroups.ToList<MuscleGroup>();
 muscleGroups.Insert(0, new MuscleGroup { id = -1,
group_name = “Please select a muscle group” });

 return muscleGroups.AsQueryable<MuscleGroup>();
}

Code snippet ExerciseService.cs

FigUre 6-5

have also added the appropriate entries in the
exercises_muscle_groups table that associates
the various weight training exercises with the
corresponding muscle group.

After creating the tables, you then need to set
up all of the required relationships, as shown in
Figure 6-3.

Data access
Just as you did with the food log page, you will
need to add another LINQ to SQL classes file
to the project in order to create the required
business objects for this page. To get this work-
ing, you should add a new LINQ to SQL classes
file to the Data folder of the ASP.NET project and
call it Exercises.dbml. Once the file is created,
you then need to drag all of the newly created
exercise tables onto the design surface, as shown
in Figure 6-4.

534045c06.indd 257 3/14/10 2:25:14 PM

258 ❘ Chapter 6 Time To HiT THe Gym

Note how an additional object is inserted into each of the collections before
being returned to the client. This object will always have an ID less than zero to
distinguish it from real items retrieved from the database. The purpose of this is
to present some direction to the user after the ComboBox controls are populated.
It is not always obvious to users what they need to do when presented with a
bunch of ComboBox controls; add to that the fact that after data binding occurs,
the ComboBox behavior is to not automatically provide a default selection, and
you may have a good recipe for user interface confusion. I always like making
use of this technique because it becomes simple to provide guidance to the user,
and after the data binding occurs you simply have to set the SelectedIndex
property to zero and the custom message is displayed.

Now of course you have to filter this instructional value in any SelectionChanged event handler
to make sure that you don’t actually try to use the value in any code behind logic. Because the list
of exercise types and muscle groups is static and should not be altered by users, you did not select
the “Enable editing” option when creating the ExerciseService. Because of this there are no other
methods generated by the wizard for these entities.

Once users make a selection from the ExerciseType or MuscleGroup ComboBox controls they will
then need to select an exercise to add to the exercise log. Because you are supporting the creation
of custom exercises, you will need to have methods for all CRUD operations on the Exercise type.
Instead of just retrieving all exercises in the database, however, you need to break this action down
into two separate methods. You will need a query method for retrieving exercises by exercise type as
well as a method for retrieving exercises by a specified muscle group.

The first method, GetExercisesByType, performs a LINQ-based query to retrieve any exercises
that are default or custom, and are associated with the specified exercise type. The next method,
GetExercisesByMuscleGroup, performs another LINQ query to retrieve any exercises matching
both the “Weight Training” exercise type from the exercise_types table, as well as the specified
muscle group. In order to perform the query, a LINQ-based join statement is needed as you will
need to query the ExercisesMuscleGroups join table to find exercises associated with the specified
muscle group. Here is the code for both of these exercise retrieval methods:

public IQueryable<Exercise> GetExercisesByType(int user_id, int exercise_type)
{
 List<Exercise> exercises = (from c in this.DataContext.Exercises
 where (c.user_id == 1 || c.user_id == user_id) &&
 c.exercise_type == exercise_type
 orderby c.exercise_name ascending
 select c).ToList<Exercise>();

 exercises.Insert(0, new Exercise
 {
 id = -1,
 exercise_name = “Please select an
exercise”
 });

 return exercises.AsQueryable<Exercise>();

534045c06.indd 258 3/14/10 2:25:14 PM

Solution ❘ 259

}

public IQueryable<Exercise> GetExercisesByMuscleGroup(int user_id,
int muscle_group)
{
 List<Exercise> exercises = (from c in this.DataContext.Exercises
 join d in this.DataContext.ExerciseMuscleGroups
 on c.id equals d.exercise_id
 where (c.ExerciseType.type_name ==
 “Weight Training” &&
 (c.user_id == 1 || c.user_id == user_id) &&
 d.muscle_group_id == muscle_group)
 orderby c.exercise_name ascending
 select c).ToList<Exercise>();

 exercises.Insert(0, new Exercise
 {
 id = -1,
 exercise_name = “Please select an
exercise”
 });

 return exercises.AsQueryable<Exercise>();
}

Code snippet ExerciseService.cs

Both of these methods make use of the technique described earlier for adding an additional record
to the retrieved collection of entities that will instruct the user to make a selection in the bound
ComboBox control. Because you are also supporting custom exercises created by users, you will also
need to include the following insert, update, and delete methods:

public void InsertExercise(Exercise exercise)
{
 this.DataContext.Exercises.InsertOnSubmit(exercise);
}

public void UpdateExercise(Exercise currentExercise)
{
 this.DataContext.Exercises.Attach(currentExercise,
this.ChangeSet.GetOriginal(currentExercise));
}

public void DeleteExercise(Exercise exercise)
{
 this.DataContext.Exercises.Attach(exercise);
 this.DataContext.Exercises.DeleteOnSubmit(exercise);
}

public void InsertExerciseMuscleGroups(ExerciseMuscleGroup exerciseMuscleGroup)
{
 this.DataContext.ExerciseMuscleGroups.InsertOnSubmit(exerciseMuscleGroup);
}

Code snippet ExerciseService.cs

534045c06.indd 259 3/14/10 2:25:14 PM

260 ❘ Chapter 6 Time To HiT THe Gym

The InsertExerciseMuscleGroups method is included in this list because if a user creates a new
weight training custom exercise you will need an additional record in this table to associate the
newly created exercise with the specified muscle group.

Retrieving the Exercise Log Entries

The ExerciseService class will also be responsible for providing the client with CRUD methods for
the exercise log entries. In the following code, the default implementations are used for the Insert,
Update, and Delete operations.

public void InsertExerciseLogEntry(ExerciseLogEntry exerciseLogEntry)
{
 this.DataContext.ExerciseLogEntries.InsertOnSubmit(exerciseLogEntry);
}

public void UpdateExerciseLogEntry(ExerciseLogEntry currentExerciseLogEntry)
{
 this.DataContext.ExerciseLogEntries.Attach(currentExerciseLogEntry,
this.ChangeSet.GetOriginal(currentExerciseLogEntry));
}

public void DeleteExerciseLogEntry(ExerciseLogEntry exerciseLogEntry)
{
 this.DataContext.ExerciseLogEntries.Attach(exerciseLogEntry);
 this.DataContext.ExerciseLogEntries.DeleteOnSubmit(exerciseLogEntry);
}

Code snippet ExerciseService.cs

In order to properly filter the exercise log entries into the appropriate DataGrid controls, you need to
ensure that both the Exercise and ExerciseType properties are returned in the ExerciseLogEntry
object. Just as you did in that case, you need to create a custom DataLoadOptions instance that specifies
the additional entities that need to be returned. The following code shows the GetExerciseLogEntries
implementation that includes the additional DataLoadOptions.

public IQueryable<ExerciseLogEntry> GetExerciseLogEntries(DateTime entry_date,
int user_id)
{
 DataLoadOptions options = new DataLoadOptions();

 options.LoadWith<Exercise>(e => e.ExerciseType);
 options.LoadWith<ExerciseLogEntry>(e => e.Exercise);
 this.DataContext.LoadOptions = options;

 return this.DataContext.ExerciseLogEntries.Where(e => e.user_id == user_id &&
e.entry_date.Date == entry_date.Date);
}

Code snippet ExerciseService.cs

534045c06.indd 260 3/14/10 2:25:15 PM

Solution ❘ 261

Don’t forget that you also need to add the [Include] attribute to both the Exercise entity of the
ExerciseLogEntry class as well as the ExerciseType entity of the Exercise class, as shown in the
following code:

[MetadataTypeAttribute(typeof(Exercise.ExerciseMetadata))]
public partial class Exercise
{
 internal sealed class ExerciseMetadata
 {
 // Metadata classes are not meant to be instantiated.
 private ExerciseMetadata()
 {
 }

 [Include]
 public ExerciseType ExerciseType;
 }
}

[MetadataTypeAttribute(typeof(ExerciseLogEntry.ExerciseLogEntryMetadata))]
public partial class ExerciseLogEntry
{
 internal sealed class ExerciseLogEntryMetadata
 {
 // Metadata classes are not meant to be instantiated.
 private ExerciseLogEntryMetadata()
 {
 }

 [Include]
 public Exercise Exercise;

 }
}

Code snippet ExerciseService.metadata.cs

The final area of business logic required here is to ensure that the GlobalCalendar style can update
its calendar days to reflect valid log entry dates. In the previous chapter, you created a custom style
selector that was used by the GlobalCalendar to style dates that are associated with valid log dates
differently from dates with no entries. It won’t make much sense to use the same class for the exercise
or measurement log pages so each page will require its own CalendarDayButtonStyleSelector imple-
mentation. This means that the ExerciseService will also need a service operation that returns dates
that have log entries associated with them. For the exercise log page, you will create a new class called
ValidExerciseLogDateSelector and place it in the Utility folder of the Silverlight project. It will have
its own collection of valid dates just like the ValidExerciseLogDateSelector did and will call the
GetLogEntryDates of the ExerciseService shown here:

[Invoke]
public List<DateTime> GetLogEntryDates(int user_id)
{
 List<DateTime> dates = new List<DateTime>();

 var entries = from c in this.DataContext.ExerciseLogEntries

534045c06.indd 261 3/14/10 2:25:15 PM

262 ❘ Chapter 6 Time To HiT THe Gym

 where c.user_id == user_id
 select c.entry_date;

 foreach (DateTime date in entries)
 {
 if (!dates.Contains(date.Date))
 dates.Add(date);
 }

 return dates;
}

Code snippet ExerciseService.cs

User interface Code behind
With the business logic complete, it’s once again time to turn your attention to the user interface
code behind implementation. As usual, the best place to start is to take a look at what happens when
the page is first loaded. To start, you need to ensure that the user can create new exercise log entries.
Users will start off by selecting an exercise type, followed by an exercise. If the user selects a weight
training exercise, then the muscle group’s ComboBox should be made visible so that the user can filter
exercises by the selected muscle group. In order for this to work you need to populate the exercise
types and muscle groups by making use of the GetExerciseTypes and GetMuscleGroups methods
of the ExerciseContext, as shown in the following code:

context = this.Resources[“ExerciseContext”] as ExerciseContext;

context.Load<ExerciseType>(context.GetExerciseTypesQuery(),
LoadBehavior.RefreshCurrent, (ExerciseTypesLoaded) =>
 {
 if (!ExerciseTypesLoaded.HasError)
 {
 ExerciseTypes.ItemsSource = ExerciseTypesLoaded.Entities;
 ExerciseTypes.SelectedIndex = 0;
 }

 }, null);

context.Load<MuscleGroup>(context.GetMuscleGroupsQuery(),
LoadBehavior.RefreshCurrent, (MuscleGroupsLoaded) =>
 {
 if (!MuscleGroupsLoaded.HasError)
 {
 MuscleGroups.ItemsSource = MuscleGroupsLoaded.Entities;
 MuscleGroups.SelectedIndex = 0;
 }

 }, null);

Exercises.ItemsSource = context.Exercises;

Code snippet ExerciseLog.xaml.cs

534045c06.indd 262 3/14/10 2:25:15 PM

Solution ❘ 263

Remember that you already have an ExerciseContext that you can use sitting in the Page.Resources
section. You should continue using that instance for any interactions you need to have with the
ExerciseService.

Implementing the ProgressBar Control

I typically like to show a ProgressBar control to users whenever any potentially long running
operation is being performed so that users don’t sit around wondering what’s happening to the user
interface. In the food log page you used a ProgressBar with the IsIndeterminate property set
to true. You will use the same type of ProgressBar on this page as well. In the food log page, you
had to toggle the Visibility property of the ProgressBar before and after any load operations
in order to display the status to the user. On this page, you will use a different technique to display
the ProgressBar. Instead of toggling the visibility in various calls to the Load<T> method, you will
instead use the new element-to-element binding supported by Silverlight. The DomainContext object
has an IsLoading property that you can actually bind the ProgressBar to. By doing so any time
the DomainContext is performing a load operation, the ProgressBar will automatically be dis-
played without any additional code on your part. Here is the code to set up the binding between the
Visibility property of the ProgressBar and the IsLoading property of the DomainContext:

Binding binding = new Binding();
binding.Source = context;
binding.Path = new PropertyPath(“IsLoading”);
binding.Converter = new ProgressBarVisibilityConverter();

ProgressBar.SetBinding(ProgressBar.VisibilityProperty, binding);

Code snippet ExerciseLog.xaml.cs

Because the Visibility property does not directly translate into a bool type property, you need to
make use of another IValueConverter class to perform the translation. In this case, you add a new
class called ProgressBarVisibilityConverter to the Converters folder in the Silverlight project
and add the following code shown in Listing 6-1:

listing 6-1: ProgressBarVisibilityConverter.cs

using System;
using System.Windows;
using System.Windows.Data;

namespace FitnessTrackerPlus.Converters
{
 public class ProgressBarVisibilityConverter: IValueConverter
 {

#region IValueConverter Members

 public object Convert(object value, Type targetType, object parameter,
System.Globalization.CultureInfo culture)
 {

continues

534045c06.indd 263 3/14/10 2:25:16 PM

264 ❘ Chapter 6 Time To HiT THe Gym

 bool isLoading = (bool)value;

 return (isLoading == true ? Visibility.Visible:
Visibility.Collapsed);
 }

 public object ConvertBack(object value, Type targetType,
object parameter, System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }

#endregion
 }
}

Creating New Exercise Log Entries

After getting all that squared away, you need to turn your attention to actually creating new exer-
cise log entries. Once the exercise types and muscle groups ComboBox controls are populated, you
need to write some code to handle the SelectionChanged event in order to populate the Exercises
ComboBox with appropriate exercises. In the case of the exercise types ComboBox if the weight train-
ing type is selected then the muscle groups ComboBox needs to be made visible; otherwise, just retrieve
the list of exercises for the selected type using the GetExercisesByType query, as shown in the fol-
lowing code:

ExerciseTypes.SelectionChanged += (se, ev) =>
{
 ExerciseType selectedType = ExerciseTypes.SelectedItem as ExerciseType;

 if (selectedType.id > 0)
 {
 if (selectedType.type_name == “Weight Training”)
 {
 MuscleGroups.Visibility = Visibility.Visible;
 Exercises.Visibility = Visibility.Collapsed;
 }
 else
 {
 context.Load<FitnessTrackerPlus.Web.Data.Exercise>(
context.GetExercisesByTypeQuery(Globals.CurrentUser.id, selectedType.id),
LoadBehavior.RefreshCurrent, (ExercisesLoaded) =>
 {
 if (!ExercisesLoaded.HasError)
 Exercises.Visibility = Visibility.Visible;

 }, null);

 MuscleGroups.Visibility = Visibility.Collapsed;

listing 6-1 (continued)

534045c06.indd 264 3/14/10 2:25:16 PM

Solution ❘ 265

 }
 }
 else
 {
 MuscleGroups.Visibility = Visibility.Collapsed;
 Exercises.Visibility = Visibility.Collapsed;
 }
};

Code snippet ExerciseLog.xaml.cs

The same basic technique applies to the muscle groups ComboBox with the only difference being that
the GetExercisesByMuscleGroup query should be used instead:

MuscleGroups.SelectionChanged += (se, ev) =>
{
 MuscleGroup selectedGroup = MuscleGroups.SelectedItem as MuscleGroup;

 if (selectedGroup.id > 0)
 {
 context.Load<FitnessTrackerPlus.Web.Data.Exercise>(
context.GetExercisesByMuscleGroupQuery(Globals.CurrentUser.id, selectedGroup.id),
LoadBehavior.RefreshCurrent, (ExercisesLoaded) =>
 {
 if (!ExercisesLoaded.HasError)
 Exercises.Visibility = Visibility.Visible;

 }, null);
 }
 else
 Exercises.Visibility = Visibility.Collapsed;
};

Code snippet ExerciseLog.xaml.cs

Note that in both cases you should set the LoadBehavior to RefreshCurrent. This
needs to be done to ensure that the list of exercises cleared of existing values
before repopulating. If you fail to set this option, the list of exercises will just
continue to grow depending on the exercise type or muscle group selection. For
example, if a user selects cardio exercises, the Exercises ComboBox control will
be filled with cardio type exercises. Because by default the LoadBehavior for
Load calls is set to KeepCurrent, if the user then selected the activities exercise
type, the list of activities would be appended to the list of exercises and now the
Exercises ComboBox would display exercises for both exercise types, which is
not what you want here.

534045c06.indd 265 3/14/10 2:25:16 PM

266 ❘ Chapter 6 Time To HiT THe Gym

You’re now at the point where users should be able to select an exercise to add to the log. You need a
couple of things to make this happen:

A method that will actually create the new exercise log entry. The method for creating ➤➤

new exercise log entries is called none other than CreateExerciseLogEntry and takes an
Exercise object as its only parameter.

A ➤➤ SelectionChanged event handler for the Exercises ComboBox that will pass the selected
exercise to that method.

private void CreateExerciseLogEntry(FitnessTrackerPlus.Web.Data.Exercise
exercise)
{
 ExerciseLogEntry entry = new ExerciseLogEntry();

 // Setup new exercise log entry with selected date, exercise
 // and current user

 entry.exercise_id = exercise.id;
 entry.entry_date = Globals.SelectedDate;
 entry.user_id = Globals.CurrentUser.id;

 context.ExerciseLogEntries.Add(entry);
 context.SubmitChanges((ChangesSubmitted) =>
 {
 if (!ChangesSubmitted.HasError)
 {
 if (exercise.ExerciseType.type_name == “Cardio”)
 CardioData.Load();
 else if (exercise.ExerciseType.type_name ==
“Weight Training”)
 WeightTrainingData.Load();
 else
 ActivityData.Load();
 }

 }, null);
}

Code snippet ExerciseLog.xaml.cs

There isn’t much to the method other than making sure the exercise_id, entry_date, and user_
id parameters are set up correctly. Then you simply add the new entry to the ExerciseLogEntries
EntityList on the ExerciseContext. After the call to SubmitChanges is complete, you need to take
a peek at the type of exercise that was loaded so that rather than refresh all three DomainDataSource
objects, you will need to refresh only the one containing the new entry. With this method ready to
go, all you need to do is handle the SelectionChanged event of the Exercises ComboBox, passing
in the selected exercise as shown.

Exercises.SelectionChanged += (se, ev) =>
{
 FitnessTrackerPlus.Web.Data.Exercise selectedExercise =

534045c06.indd 266 3/14/10 2:25:17 PM

Solution ❘ 267

Exercises.SelectedItem as FitnessTrackerPlus.Web.Data.Exercise;

 if(selectedExercise.id > 0)
 CreateExerciseLogEntry(selectedExercise);
};

Code snippet ExerciseLog.xaml.cs

That takes care of creating exercise log entries using one of the default exercises — now what about
custom exercises?

Supporting Custom Exercises

In order to provide the ability for users to create custom exercises, you need to add a new UserControl
called CustomExercise to the Exercise folder of the Silverlight project. Once the control is created
you need to add a DataForm and some customized DataField templates. Listing 6-2 shows the
XAML for the CustomExercise control:

listing 6-2: CustomExercise.xaml

<UserControl x:Class=”FitnessTrackerPlus.Views.Exercise.CustomExercise”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:data_dataform=”clr-namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Data.DataForm.Toolkit”>
 <UserControl.Resources>
 <Style x:Key=”CustomExerciseFormStyle”
TargetType=”data_dataform:DataForm”>
 <Setter Property=”AutoEdit” Value=”True” />
 <Setter Property=”AutoGenerateFields” Value=”False” />
 <Setter Property=”Foreground” Value=”#FF000000” />
 </Style>
 <Style x:Key=”LargeTextBoxStyle” TargetType=”TextBox”>
 <Setter Property=”FontSize” Value=”10” />
 <Setter Property=”TextAlignment” Value=”Center” />
 <Setter Property=”Width” Value=”200” />
 </Style>
 </UserControl.Resources>
 <data_dataform:DataForm x:Name=”CustomExerciseForm”
Style=”{StaticResource CustomExerciseFormStyle}”>
 <data_dataform:DataForm.EditTemplate>
 <DataTemplate>
 <StackPanel>
 <data_dataform:DataField>
 <TextBox Text=”{Binding Path=exercise_name,
Mode=TwoWay}” Style=”{StaticResource LargeTextBoxStyle}” />
 </data_dataform:DataField>
 <data_dataform:DataField>
 <ComboBox x:Name=”ExerciseTypes”
DisplayMemberPath=”type_name” />
 </data_dataform:DataField>

continues

534045c06.indd 267 3/14/10 2:25:17 PM

268 ❘ Chapter 6 Time To HiT THe Gym

 <data_dataform:DataField>
 <ComboBox x:Name=”MuscleGroups”
DisplayMemberPath=”group_name” />
 </data_dataform:DataField>
 </StackPanel>
 </DataTemplate>
 </data_dataform:DataForm.EditTemplate>
 </data_dataform:DataForm>
</UserControl>

When users create new custom exercises, you want to make sure that they associate one of the
available exercise types to it. Also, if they are creating a weight training exercise, a muscle group
association should be made. In order to ensure that the user not only supplies a name for the exercise
but also makes a valid selection for the exercise type, you should add a couple of new validation rules
to the metadata file for the ExerciseService, as shown in the following code:

 [MetadataTypeAttribute(typeof(Exercise.ExerciseMetadata))]
public partial class Exercise
{
 internal sealed class ExerciseMetadata
 {
 // Metadata classes are not meant to be instantiated.
 private ExerciseMetadata()
 {
 }

 [Required]
 [Display(Name = “Exercise Name:”)]
 public string exercise_name;

 [Required]
 [Range(1,3, ErrorMessage = “You must select an exercise type”)]
 public int exercise_type;

 public EntitySet<ExerciseLogEntry> ExerciseLogEntries;

 public EntitySet<ExerciseMuscleGroup> ExerciseMuscleGroups;

 [Include]
 public ExerciseType ExerciseType;

 public int id;

 [Required]
 public int user_id;

 }
}

Code snippet ExerciseService.metadata.cs

listing 6-2 (continued)

534045c06.indd 268 3/14/10 2:25:17 PM

Solution ❘ 269

When the custom exercise control is first loaded, you need to set the CurrentItem property of the
DataForm to a new Exercise object. You also should hide any of the command buttons because this
form will be used for creating new exercises only.

CustomExerciseForm.CommandButtonsVisibility =
DataFormCommandButtonsVisibility.Commit |
DataFormCommandButtonsVisibility.Cancel;
CustomExerciseForm.CurrentItem = new FitnessTrackerPlus.Web.Data.Exercise {
user_id = Globals.CurrentUser.id };

Code snippet CustomExercise.xaml.cs

In the DataForm declaration you aren’t binding the list of exercise types or muscle groups to any
property of the Exercise object. This is partly because the Exercise object does not really have
anything that will map to a list of all available exercise types and muscle groups. Still, you need to
find a way to populate these lists somehow. In order to get this to work, you need to manually bind
these controls to the appropriate collections. However, if you try and access them directly you will
notice that they are not available in the IntelliSense window. The trick to accessing these controls
or any controls declared in a custom DataField template is to hook into the ContentLoaded event
of the DataForm and make use of the FindNameInContent method. As long as you make the call to
FindNameInContent in the ContentLoaded event handler you should have no problem grabbing a
handle to the instance of these controls. Once you have that, you can use an ExerciseContext to
actually populate the ComboBox controls, as shown in the following code:

 private void CustomExerciseForm_ContentLoaded(object sender,
DataFormContentLoadEventArgs e)

private void CustomExerciseForm_ContentLoaded(object sender,
DataFormContentLoadEventArgs e)
{
 ComboBox exerciseTypes =
CustomExerciseForm.FindNameInContent(“ExerciseTypes”) as ComboBox;
 ComboBox muscleGroups =
CustomExerciseForm.FindNameInContent(“MuscleGroups”) as ComboBox;

 context.Load<ExerciseType>(context.GetExerciseTypesQuery(),
LoadBehavior.RefreshCurrent, (ExerciseTypesLoaded) =>
 {
 if (!ExerciseTypesLoaded.HasError)
 {
 exerciseTypes.ItemsSource = ExerciseTypesLoaded.Entities;
 exerciseTypes.SelectedIndex = 0;
 }

 }, null);

 context.Load<MuscleGroup>(context.GetMuscleGroupsQuery(),
LoadBehavior.RefreshCurrent, (MuscleGroupsLoaded) =>
 {
 if (!MuscleGroupsLoaded.HasError)
 {
 muscleGroups.ItemsSource = MuscleGroupsLoaded.Entities;
 muscleGroups.SelectedIndex = 0;

534045c06.indd 269 3/14/10 2:25:17 PM

270 ❘ Chapter 6 Time To HiT THe Gym

 }

 }, null);

 exerciseTypes.SelectionChanged += (sev, eve) =>
 {
 ExerciseType selected = exerciseTypes.SelectedItem as
ExerciseType;

 if (selected != null)
 {
 if (selected.id > 0)
 {
 if (selected.type_name == “Weight Training”)
 muscleGroups.Visibility = Visibility.Visible;
 else
 muscleGroups.Visibility = Visibility.Collapsed;
 }
 else
 muscleGroups.Visibility = Visibility.Collapsed;

 // The exercise_type field is required so you must
 // set this in order to pass validation

 if (select.id > 0)

 (CustomExerciseForm.CurrentItem as
FitnessTrackerPlus.Web.Data.Exercise).exercise_type =
selected.id;
 }
 };

 muscleGroups.SelectionChanged += (sev, eve) => { selectedGroup =
muscleGroups.SelectedItem as MuscleGroup; };
}

Code snippet CustomExercise.xaml.cs

Once the user is finished entering the custom exercise details, you will need to actually create the
exercise in the database and, just as you did when providing support for custom foods, you should
fire an event to the hosting control so that a new exercise log entry can also be created using the new
custom food. Once again, in order to create the new custom food, you should handle the EditEnded
event of the DataForm as shown:

public delegate void CustomFoodCreatedEventHandler(object sender,
CustomExerciseCreatedEventArgs e);

public event CustomFoodCreatedEventHandler CustomExerciseCreated;
public event EventHandler CustomExerciseCanceled;

CustomExerciseForm.EditEnded += new
EventHandler<DataFormEditEndedEventArgs>(CustomExerciseForm_EditEnded);

private void CustomExerciseForm_EditEnded(object sender,

534045c06.indd 270 3/14/10 2:25:18 PM

Solution ❘ 271

DataFormEditEndedEventArgs e)
{
 if (e.EditAction == DataFormEditAction.Cancel &&
CustomExerciseCanceled != null)
CustomExerciseCanceled(this, null);
 else
 {
 if (CustomExerciseForm.ValidateItem())
 {
 // If validation succeeds then add
 // the exercise to the database

 context.Exercises.Add(CustomExerciseForm.CurrentItem as
FitnessTrackerPlus.Web.Data.Exercise);
 context.SubmitChanges((ExerciseSubmitted) =>
 {
 if (!ExerciseSubmitted.HasError)
 {
 // If the exercise was a weight training exercise we
 // need to add an entry to the
 // exercises_muscle_groups table

 FitnessTrackerPlus.Web.Data.Exercise customExercise =
CustomExerciseForm.CurrentItem as FitnessTrackerPlus.Web.Data.Exercise;

 if (customExercise.ExerciseType.type_name ==
“Weight Training”)
 {
 ExerciseMuscleGroup exerciseMuscleGroup = new
ExerciseMuscleGroup { muscle_group_id = selectedGroup.id, exercise_id =
customExercise.id };

 context.ExerciseMuscleGroups.Add(
exerciseMuscleGroup);
 context.SubmitChanges((
ExerciseMuscleGroupSubmitted) =>
 {
 if (
!ExerciseMuscleGroupSubmitted.HasError)
 {
 if (CustomExerciseCreated !=
null)
 CustomExerciseCreated(this,
New CustomExerciseCreatedEventArgs(customExercise));
 }

 }, null);
 }
 else
 {
 if(CustomExerciseCreated != null)
 CustomExerciseCreated(this, new
CustomExerciseCreatedEventArgs(customExercise));
 }

534045c06.indd 271 3/14/10 2:25:18 PM

272 ❘ Chapter 6 Time To HiT THe Gym

 }

 }, null);
 }
 }
}

public class CustomExerciseCreatedEventArgs
{
 private FitnessTrackerPlus.Web.Data.Exercise custom_exercise = null;

 public CustomExerciseCreatedEventArgs() { }
 public CustomExerciseCreatedEventArgs(FitnessTrackerPlus.Web.Data.Exercise
custom_exercise)
 {
 this.custom_exercise = custom_exercise;
 }

 public FitnessTrackerPlus.Web.Data.Exercise CreatedExercise
 {
 get
 {
 return custom_exercise;
 }
 }
}

Code snippet CustomExercise.xaml.cs

In order to use the CustomExercise control from the ExerciseLog page, you must add an event
handler for the Click event of the custom exercise button. In this event handler, you just create a
new instance of a CustomExercise control and display it in a new modal ChildWindow.

CustomExercise.Click += new RoutedEventHandler(CustomExercise_Click);

private void CustomExercise_Click(object sender, RoutedEventArgs e)
{
 // Show a modal dialog with the create custom exercise form

 ChildWindow modalWindow = new ChildWindow();
 CustomExercise customExercise = new CustomExercise();

 customExercise.CustomExerciseCanceled += (s, ev) => { modalWindow.Close(); };
 customExercise.CustomExerciseCreated += (s, ev) =>
 {
 CreateExerciseLogEntry(ev.CreatedExercise);
 modalWindow.Close();
 };

 customExercise.DataContext = new FitnessTrackerPlus.Web.Data.Exercise();

 modalWindow.Title = “Add Custom Exercise”;
 modalWindow.Content = customExercise;
 modalWindow.Show();
}

Code snippet ExerciseLog.xaml.cs

534045c06.indd 272 3/14/10 2:25:18 PM

Solution ❘ 273

Updating and Deleting Exercise Log Entries

With that code complete, users can now create new exercise log entries using one of the default exer-
cises or by creating their own custom exercises. Next up is providing them with the ability to both
update and delete these entries. Because users cannot alter the details of a given exercise entry until
it is created, you will need to ensure that updating the entry details is simple and painless. For the
most part, the DataGrid columns have their CellEditingTemplate set to a TextBox control that
users can use to enter numeric values such as calories, distance, reps, weight, and so on. However,
there is one column that you should take a better look at. The duration column in the cardio and
activity log is intended to be used by users to enter the total time that they performed the exercise.
Ideally, there would be some kind of masked textbox control that you can use similar to the one pro-
vided in the AjaxControlToolkit for ASP.NET based solutions. Although there is no such control in
this release of Silverlight, you do have the option of using the new TimePicker control instead. The
TimePicker control works only with DateTime types so although you only really care about hours,
minutes, and seconds for the duration column, you will still need to use a full DateTime column in
the database for the duration field. In order to start using the TimePicker control you first need to
add the following namespace declaration at the top of the page:

xmlns:toolkit_input=”clr-
amespace:System.Windows.Controls;assembly=System.Windows.Controls.Input.Toolkit”

Code snippet ExerciseLog.xaml.cs

With the namespace declared, you can easily add the TimePicker to the CellEditingTemplate of
the duration column:

<data:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <toolkit_input:TimePicker x:Name=”Duration”
Value=”{Binding Path=duration, Mode=TwoWay}” />
 </DataTemplate>
</data:DataGridTemplateColumn.CellEditingTemplate>

Code snippet ExerciseLog.xaml.cs

Because you want the TimePicker to display time in a format such as “HH:mm:ss” you will need
to do some additional work. The default behavior of the control does not really work for what
you are trying to accomplish. Now, because the control is embedded in a DataTemplate, you can’t
just simply access the control and add the required customizations so you will need to hook up the
PreparingCellForEdit event on the DataGrid, which is fired as soon as the DataTemplate switches
to the CellEditingTemplate. In this event handler, you can easily gain access to the TimePicker
control and make the necessary modifications. The following code shows the PreparingCellForEdit
event handler and the modifications required to make the TimePicker useful for helping users to enter
a duration value:

private void ExerciseLogGrid_PreparingCellForEdit(object sender,
DataGridPreparingCellForEditEventArgs e)
{
 DataGrid grid = sender as DataGrid;

534045c06.indd 273 3/14/10 2:25:18 PM

274 ❘ Chapter 6 Time To HiT THe Gym

 ExerciseLogEntry entry = e.Row.DataContext as ExerciseLogEntry;
 TimePicker duration =
grid.Columns[e.Column.DisplayIndex].GetCellContent(e.Row) as TimePicker;

 if (duration != null)
 {
 duration.Minimum = new DateTime(DateTime.Now.Year, DateTime.Now.Month,
DateTime.Now.Day, 0, 0, 0);
 duration.Maximum = new DateTime(DateTime.Now.Year, DateTime.Now.Month,
DateTime.Now.Day, 23, 59, 59);
 duration.PopupSecondsInterval = 1;
 duration.PopupMinutesInterval = 1;
 duration.Format = new CustomTimeFormat(“HH:mm:ss”);

 // As entries are created they will default to a duration of null,
 // initialize the TimePicker to 00:00:00

 if (entry.duration == null)
 duration.Value = new DateTime(DateTime.Now.Year, DateTime.Now.Month,
DateTime.Now.Day, 0, 0, 0);

 // Adjust the column width to fit the TimePicker control

 grid.Columns[e.Column.DisplayIndex].Width =
new DataGridLength(duration.ActualWidth);
 }
}

Code snippet ExerciseLog.xaml.cs

As you can see, you want users to be able to set values in a 24-hour range so you need to set the
Format property to the CustomTimeFormat “HH:mm:ss”. You also want to make sure users can
increment the seconds and minutes fields by a step of one, hence the PopupSecondsInterval and
PopupMinutesInterval being set to one. The custom DateTime objects used for the Minimum and
Maximum values basically enable users to select any valid 24-hour range for a time. Finally, because
the TimePicker control will take up more space than the TextBlock used to display the duration
property when the DataGrid is not in editing mode, you are increasing the column width to the size
of the TimePicker control before it is actually displayed. This prevents the user from having to man-
ually resize the column to see the entire TimePicker control. Once the user actually makes a selection
using the control and the row edit is complete, you still have the problem that the TimePicker will
display a DateTime data type. This means that even though the TimePicker allowed the user to select
a duration in the “HH:mm:ss” custom format, the TextBlock that displays the duration property will
show the complete DateTime value. Because no actual date is used, the user would be presented with
a full DateTime string and an invalid date. Of course you don’t want the user to see a date at all here,
just the custom time format. Luckily this small problem is easily solved using the new StringFormat
attribute in the data binding string of the DataGrid column.

534045c06.indd 274 3/14/10 2:25:18 PM

Solution ❘ 275

Once the cell editing templates are taken care of, adding the code to actually save the changes to the
database is simple. Once again, you are hooking up to the RowEditEnded event for each DataGrid
and making a call to SubmitChanges using the ExerciseContext.

CardioLogGrid.RowEditEnded += new
EventHandler<DataGridRowEditEndedEventArgs>(ExerciseLogGrid_RowEditEnded);

ActivityLogGrid.RowEditEnded += new
EventHandler<DataGridRowEditEndedEventArgs>(ExerciseLogGrid_RowEditEnded);

WeightTrainingLogGrid.RowEditEnded += new
EventHandler<DataGridRowEditEndedEventArgs>(ExerciseLogGrid_RowEditEnded);

private void ExerciseLogGrid_RowEditEnded(object sender,
DataGridRowEditEndedEventArgs e)
{
 // Submit any exercise log changes and refresh the DataGrid

 if (context.HasChanges)
 context.SubmitChanges();
}

Code snippet ExerciseLog.xaml.cs

That takes care of implementing the create, read, and update scenarios for each of the DataGrid
controls. The only thing left is to work out the details of the delete operation and the CheckBox
select/deselect logic.

Using the VisualTreeHelper

When you were working with the food log page, you only had to worry about one DataGrid con-
trol. This made the logic for the CheckBox header column pretty straightforward. You could safely
iterate through all of the food log entries loaded by the DomainContext. The fact that each of the
DataGrid controls on the exercise log page filters entries based on the associated exercise type
means that you can’t just iterate through all the loaded exercise log entries in order to determine
which CheckBox controls to toggle.

One solution might be to iterate through all of the loaded exercise log entries and create a large
switch statement based on the exercise type in order to determine which DataGrid contains the
header CheckBox that was clicked. A better method is to find a way to iterate specifically through
the ItemsSource collection on the DataGrid that is hosting the column header CheckBox that
was actually clicked. Unfortunately, a brief glance at the Parent property of the column header
CheckBox control does not show a DataGrid control. So how do you find out what DataGrid is
actually hosting the control? The answer lies in using the Silverlight methods available for walking
up the visual tree of controls. You can use the VisualTreeHelper.GetParent method, passing the
header CheckBox as a parameter, and walk through the tree of parent controls until you eventually
reach the DataGrid hosting the control. Rather than make a ton of nested calls to this method,

534045c06.indd 275 3/14/10 2:25:19 PM

276 ❘ Chapter 6 Time To HiT THe Gym

however, you should instead add a new method to the DataGridHelper class you created in the
previous chapter and have this method return the parent DataGrid using the supplied CheckBox
column header control as shown in the following code.

public static DataGrid GetParentGrid(CheckBox checkBox)
{
 Grid innerGrid = VisualTreeHelper.GetParent(checkBox) as Grid;
 DataGridColumnHeader header = VisualTreeHelper.GetParent(innerGrid)
as DataGridColumnHeader;
 DataGridColumnHeadersPresenter presenter = VisualTreeHelper.GetParent(header)
as DataGridColumnHeadersPresenter;
 Grid outerGrid = VisualTreeHelper.GetParent(presenter) as Grid;
 Border innerBorder = VisualTreeHelper.GetParent(outerGrid) as Border;
 Grid borderGrid = VisualTreeHelper.GetParent(innerBorder) as Grid;

 return VisualTreeHelper.GetParent(borderGrid) as DataGrid;
}

Code snippet DataGridHelper.cs

Once you have access to the parent DataGrid hosting the CheckBox, Selecting/Deselecting All of
the row level CheckBox controls becomes trivial. Now you can just iterate through all of the exer-
cise log entries contained in the ItemsSource property and toggle the CheckBox controls in the
last DataGrid column to match the CheckBox header. In the following code, a CheckAll_Checked
method is added to the code behind of the ExerciseLog page. First the GetParentGrid method that
you just implemented is used to gain access to the DataGrid control that is hosting the CheckBox
that initiated this event. From there the code loops through all the rows of the DataGrid by iterat-
ing through the ItemsSource property. Lastly the IsChecked state is toggled depending on the
IsChecked state of the CheckBox control that initiated the event.

private void CheckAll_Checked(object sender, RoutedEventArgs e)
{
 DataGrid grid = DataGridHelper.GetParentGrid(sender as CheckBox);

 foreach (ExerciseLogEntry entry in grid.ItemsSource)
 {
 grid.SelectedItem = entry;
 CheckBox selectItem = grid.Columns[grid.Columns.Count -
1].GetCellContent(grid.SelectedItem) as CheckBox;

 if (selectItem != null)
 selectItem.IsChecked = (sender as CheckBox).IsChecked;
 }
}

Code snippet ExerciseLog.xaml.cs

Deleting Exercise Log Entries

Now that the Select/Deselect All logic is complete, it’s time to turn your attention to the actual code
to delete the selected exercise log entries. To make this happen, you need to add a Click event handler
for the Delete Button control. Because you have three separate DataGrid controls to worry about,

534045c06.indd 276 3/14/10 2:25:19 PM

Solution ❘ 277

one way to approach the delete code is to write code that iterates through all the DataGrid rows
to determine which rows are selected and then to delete the records accordingly. Of course, if you
go this way, you need to duplicate this same code for all three DataGrid controls. A better solution
is to make use of the ExerciseContext object and iterate through all of the ExerciseLogEntry
objects that have been loaded regardless of which DataGrid control they have been bound to. In the
following code, each ExerciseLogEntry object determines which DataGrid control to work with
based on the exercise type. Then the specific CheckBox control for each row is extracted by using the
GetCellContent method on the last available column in the row. From there, you can determine if
the CheckBox has been checked by the user and delete the entry from the database.

private void DeleteSelected_Click(object sender, RoutedEventArgs e)
{
 List<ExerciseLogEntry> entries = new List<ExerciseLogEntry>();

 // First check the cardio grid, then weight training and activities

 foreach (ExerciseLogEntry entry in context.ExerciseLogEntries)
 {
 CheckBox selectItem = null;

 if (entry.Exercise.ExerciseType.type_name == “Cardio”)
 {
 CardioLogGrid.SelectedItem = entry;
 selectItem =
CardioLogGrid.Columns[CardioLogGrid.Columns.Count -
1].GetCellContent(CardioLogGrid.SelectedItem) as CheckBox;
 }
 else if (entry.Exercise.ExerciseType.type_name == “Weight Training”)
 {
 WeightTrainingLogGrid.SelectedItem = entry;
 selectItem =
WeightTrainingLogGrid.Columns[WeightTrainingLogGrid.Columns.Count -
1].GetCellContent(WeightTrainingLogGrid.SelectedItem) as CheckBox;
 }
 else
 {
 ActivityLogGrid.SelectedItem = entry;
 selectItem = ActivityLogGrid.Columns[ActivityLogGrid.Columns.Count -
1].GetCellContent(ActivityLogGrid.SelectedItem) as CheckBox;
 }

 if (selectItem != null)
 if (selectItem.IsChecked == true)
 entries.Add(entry);
 }

 foreach (ExerciseLogEntry entry in entries)
 context.ExerciseLogEntries.Remove(entry);

 context.SubmitChanges((EntriesRemoved) =>
 { ProgressBar.Visibility = Visibility.Collapsed; }, null);
}

Code snippet ExerciseLog.xaml.cs

534045c06.indd 277 3/14/10 2:25:19 PM

278 ❘ Chapter 6 Time To HiT THe Gym

In the previous code, the actual delete operation is accomplished by simply removing the selected
entry from the ExerciseLogEntries EntityList object of the ExerciseContext object.

Accessing Previous Entries

The final aspect of the code behind to be aware of is the GlobalCalendar. Earlier, you saw how
to make the GlobalCalendar work as a ControlParameter to each of the DomainDataSource
controls. This means that as the user selects various dates on the calendar, the DomainDataSource
controls will automatically refresh and load the exercise log entries associated with the selected
date. However, you still need to make sure that the Globals.SelectedDate is updated during this
event as well so that if the user changes to the food or measurement log pages the correct entries
will be loaded when those pages are displayed. The logic for this is the same as in the previous chap-
ter — just add an event handler for the SelectedDatesChanged event on the GlobalCalendar con-
trol and set the Globals.SelectedDate property to the date selected.

Calendar.SelectedDatesChanged += (se, ev) =>
{
 if (Calendar.SelectedDate.HasValue)
 Globals.SelectedDate = Calendar.SelectedDate.Value;
};

Code snippet ExerciseLog.xaml.cs

sUmmary

We have come to the conclusion of yet another chapter. You now have two-thirds of the data entry
work complete in the form of fully functional food and exercise log pages. Users can select from
default foods and exercises or even create their own custom entries. You have also seen how to make
use of new powerful new controls such as the DomainDataSource, TimePicker, GlobalCalendar,
and DataForm to name a few. You have also been introduced to several control events that, when
implemented, can give you access to controls that have been defined in DataTemplate declarations
and would normally be difficult to gain access to. An alternate way of displaying the ProgressBar
control was proposed in this chapter and should give you the basis for creative ways to make use of
the new element-to-element binding feature of Silverlight. Knowing that you can now bind proper-
ties such as a control’s Visibility to values from their controls can make for some powerful user
interface enhancements. Perhaps most important, by creating the cascading ComboBox controls, you
have provided users with the most efficient way to perform data entry of exercise log entries.

Now it’s time to move on to the final piece of the data entry puzzle — the measurement log page.
By creating this page, you will be giving users the ability to record various measurements as well as
images of themselves so that they can easily see if they are achieving their desired results. The next
chapter covers not only more Silverlight data entry techniques but also how to provide users with the
ability to upload and store images from the Silverlight client.

534045c06.indd 278 3/14/10 2:25:20 PM

Am I Working Hard Enough?
Creating the Measurement Log Page

In this chapter, you will be working on the third and final major data entry screen for the
application. The measurement log page is an important aspect of the application in that it will
provide users with the ability to keep track of their overall measurements. By keeping track
of their measurements over the long-term, users will be able to see if all of their hard work
invested in their diet and exercise program is finally paying off.

In the previous chapters, you saw how to make use of powerful new controls in Silverlight and the
Silverlight Toolkit such as the DataGrid, GlobalCalendar, AutoCompleteBox, and DataForm.
By combining all the controls, you were able to provide a rich user interface for quick and easy
data entry. Just as you have done in the previous two chapters, you will be providing users with
a quick and easy way to perform the required data entry task, which in this case is logging cur-
rent measurements. You will also be providing users with the ability to create and easily track
their own custom measurements. In addition to these features, you will be providing a way for
users to upload images of themselves so that on any given day they will be able to easily get a
visual representation of the measurements being tracked. You will soon see that even though
you are really adding only one new user interface aspect to the data entry screen, you still have
some significant design problems to solve such as where to store the uploaded images, and what
image types and dimensions should be supported. The main intent of this chapter is to provide
you with a Silverlight-based image-uploading solution that you can use in your own Silverlight
applications as you will no doubt encounter many of the same design issues that will be worked
on here.

Problem

Users of FitnessTrackerPlus can now come to the site and easily keep track of foods and exer-
cises on a daily basis. As with many things in life, however, if you don’t have a set goal and a
good way to measure the progress of that goal, then all you really have is a bunch of related

7

534045c07.indd 279 3/13/10 4:51:01 PM

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

280 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

events and actions with no set purpose. Presumably, users have signed up for this site because they
have a specific fitness goal in mind such as losing ten pounds or gaining a couple of inches in arm
size. Perhaps they might even want to track progress toward a health-related goal such as lowering
their blood pressure or decreasing their overall body fat.

Keeping track of foods and exercises is only one aspect of making sure those goals are achieved. The
next important aspect of the fitness plan is to measure the progress being made toward those goals.
It is for this reason that users of the site will be expecting the third data entry screen for keeping
track of various measurements so users can easily see the progress they have made toward their goals.
Similar to how users entered foods and exercises, they will be expecting to select from some standard
measurements that apply across all users of the site. Of course, users will also be expecting to track
custom measurements as well.

The final problem that needs to be addressed on this page is that although text-based measurements
are useful and can give the user a great way to measure progress, nothing is more convincing than
a photo. There is perhaps no better way for users to see if they are making progress than to com-
pare photos of themselves from the start of the fitness program to recently uploaded photos. The
measurement log page will need to provide users with a way to upload their own photos and tie
those images to specific days in their log. This way, with just one click of the GlobalCalendar control,
they will be able to easily see the physical changes that are occurring as they continue to make use of
the site.

Design

To begin the design process for this page, I will once again make use of the user story design tool
introduced in the previous two chapters.

User stories
The problem statement contains several clearly defined requirements for this page, but to ensure
nothing is missed, let’s take a look at a user story that simulates what a typical user might try to
accomplish when arriving at this page to log his or her current measurements.

Logging User MeasurementsUser story

Bill has been working out for many years now and he feels that all his training and hard work has not
really paid off as much as he would like. Although he feels he’s in better shape than years ago, he really
doesn’t have much in the way of proof. He decides it’s time to track things such as his measurements.
Ideally, he would like to keep a photo journal showing how his appearance changes over the next few
months as he prepares to go on an even more rigid diet and exercise routine. After finding an advertise-
ment for the FitnessTrackerPlus website at his local gym, he decides to create a new account and see
what the site has to offer. He is pleasantly surprised by how easy it is to enter his foods and exercises,
so he checks out the measurement log page to see if he will be able to keep track of all his measure-
ments. This page offers him the ability to keep track of all the major measurements that interest him

534045c07.indd 280 3/13/10 4:51:01 PM

Design ❘ 281

as well as create custom measurements. This is great because he had been planning on keeping a jour-
nal of other important measurements such as cholesterol and blood pressure. After adding all of the
measurements, he goes back to the table to enter the appropriate values. One of Bill’s biggest goals is
to lower his overall BMI measurement. He attempts to remember the correct way to calculate BMI but
then notices the BMI entry in the table has a hyperlink. After clicking the link, he is presented with a
great BMI calculator utility and can enter some basic information. When he hits Enter, the newly calcu-
lated Body Mass Index (BMI) is reflected in his measurement log. In addition to these great features, he
also notices that for every day on the calendar he can upload an image of himself and just by clicking
various days on the calendar, he can quickly get a visual representation of the changes in his appear-
ance. The program seems to have everything he is looking for.

After taking a close look at the previous user story, it appears that there may be an additional require-
ment that was not part of the original problem statement. Bill is attempting to log a measurement
that involves a calculation relying on some additional data. Rather than force Bill to leave the site and
figure out the correct way to calculate BMI, FitnessTrackerPlus presents him with a modal window
containing a BMI calculator control. Bill found this easily because the measurement log entry for BMI
showed up as a hyperlink control. As you can see in this particular case writing, Bill’s story pointed
out an additional feature that might be needed but was not part of the original design requirements.
Now let’s look at the complete list of requirements for this page including both the requirements from
the initial problem statement as well as the new requirement extracted from the user story.

requirements
The following lists detail the requirements for this chapter. These requirements were extracted from
the original problem statement with the exception of the BMI calculator requirement, which were
taken from the user story. Users should be able to:

View a list of measurements recorded in a tabular format.➤➤

Update their current measurements by selecting from a default list of measurements or by ➤➤

creating their own custom measurements.

Update the values and units of each entry after adding measurement entries.➤➤

Upload images of their progress and tie those images to a given log date.➤➤

Enter past, present, and future log entries.➤➤

Create, read, update, and delete any measurement log entries.➤➤

In addition, the interface should include or support:

Default measurements, including Weight, BMI, Waist, Arms, and Legs.➤➤

Both Metric- and Standard-based units.➤➤

A hyperlink that, when clicked, will display a modal BMI calculator.➤➤

534045c07.indd 281 3/13/10 4:51:01 PM

282 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

measurement log
The measurement log page is where users go to see how they are progressing toward their individual
fitness goals. After taking the steps to keep track of foods and exercises on a daily basis, it only seems
natural to see if anything positive is coming from all the hard work. The measurement log will need
to provide the users with a way to keep track of common measurements on a daily basis. Now it may
be more common for some users to keep track of information weekly or even monthly, but because
you can’t be sure, you might as well provide daily access as you did for foods and exercises. In addi-
tion to the basic management of measurement log entries, this page will need to display an image
of the user that has been associated with the currently selected date. This image, combined with
the measurement values, will give users an easy way to determine if they are making solid progress
toward their fitness goals.

User Interface

The user interface for the measurement log page will be somewhat different from the previous log
page designs. You still need a GlobalCalendar control so that users can access past and future
entries. You will have only a handful of default measurements for users to choose from so providing
an AutoCompleteBox control for searching would probably be overkill on this page. Instead, you
should provide a ComboBox containing both default measurements and any custom measurements
that may have been created by the user. In order to display the measurement log entries, you can
use a single DataGrid control that will display the measurement name, current value, and unit of
measure. Should the user add an entry for BMI, that entry should appear as a hyperlink that, when
clicked, displays a modal ChildWindow control hosting the calculator control for the measurement.

In addition to providing the capability to add entries to the measurement log, you are also required to
allow users to upload their current image and tie that image to the currently selected date. The user
interface will need to include an area to display any image that has been uploaded for the selected
date, and you will also need to add a button to the interface that allows users to select a new image to
upload. There really isn’t much else required for the user interface so given all of the items mentioned,
Figure 7-1 shows what the potential user interface for the measurement log page will look like.

Default Measurements

Measurement Log Entries

Custom Measurements

Global Calendar

Current User
Image

Upload Image

FigUre 7-1

534045c07.indd 282 3/13/10 4:51:02 PM

Design ❘ 283

Database

You will need only a couple of additional database tables for the measurement log page. First, you will
need a table to hold the measurement definitions themselves. This measurements table (see Table 7-1)
will also be where any custom measurements created by the users will be stored.

table 7-1: measurements

ColUmn name tyPe DesCriPtion

id int Unique identity field for measurements

measurement_name varchar(100) Name of measurement

user_id int ID of associated user

Next, you will need a table (see Table 7-2) to store all of the possible units of measure; this table should
include both Metric and Standard units of measure that can be used for the default measurements in
the measurements table.

table 7-2: measurement_units

ColUmn name tyPe DesCriPtion

id int Unique identity field for measurement units

unit varchar(25) Name of measurement unit

The next table required (see Table 7-3) will be a join table that links measurements to their associ-
ated units of measure. The measurements_units table should, by default, contain entries that link
the default measurements to their appropriate unit of measure in both Metric and Standard form.

table 7-3: measurements_units

ColUmn name tyPe DesCriPtion

id int Unique identity field for join record

measurement_id int ID of associated measurement

unit_id int ID of associated unit

You now need a place to store the actual measurement log entries. The measurement_logs table (see
Table 7-4) will contain the current value of the measurement being recorded along with the associated
user and measurement.

534045c07.indd 283 3/13/10 4:51:02 PM

284 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

table 7-4: measurement_logs

ColUmn name tyPe DesCriPtion

id int Unique identity field for entry

measurement_id int ID of associated measurement

user_id int ID of associated user

entry_date datetime Date of measurement log entry

value float Current value of measurement

unit_id int ID of associated unit of measure

Before the final database table is created, you must first think about how you are going to solve one
of the main issues that came up during the original problem statement. You want to provide a way
for users to upload their images, but you never did decide on how you were going to store that image.
In this case you have a couple of options. First, you could store the binary image data right in the
database table, but of course this would take up quite a bit of additional database space. If you are
running the site from a shared hosting provider and manage to get thousands of users, you could fill
up your database space quota relatively easily. As I stated earlier, increasing the database storage in
a shared hosting plan can get quite expensive once you start talking about support for tens of thou-
sands of users, and that is just using basic data types in your database schema; never mind adding
actual raw image data as well.

The second choice is to store the uploaded images in the file system on the web server. Most shared
hosting plans actually have no problem giving you large amounts of physical disk space to store files
so this would be the most cost-effective route to take until you have a site that is popular enough to
justify a dedicated hosting solution. That being said, for FitnessTrackerPlus you will simply store the
path to the uploaded image on the file system in the database table, which results in a much smaller
column size and makes full use of the generous disk space that is usually offered in shared hosting
plans. Now, with that important design decision complete, you can finish the design of the measure-
ment_images table (see Table 7-5). This table will store the full path to the image along with an
entry_date field that is used to lookup any images that have been uploaded for the selected date.

table 7-5: measurement_images

ColUmn name tyPe DesCriPtion

id int Unique identity field for image

file_name varchar(255) Full path to the uploaded image on the web server

entry_date datetime Measurement log entry date to be associated with the

image

user_id int ID of associated user

534045c07.indd 284 3/13/10 4:51:03 PM

Design ❘ 285

Data Access

For the design of the data access layer, you will once again count on LINQ to SQL to generate the
required entity classes. This should be done by dragging and dropping the newly created tables onto
the designer and renaming the entity class definitions using the naming convention that was used in
the previous chapters.

Business Logic

The business logic required for the measurement log page consists of yet another DomainService
added to the project. This MeasurementService class will need to include all of the methods required
for managing custom measurements, measurement log entries, and of course the uploaded user images.
The image upload feature will require some custom logic that is not automatically generated by the
DomainService wizard. Although you should have no problem using the generated code to update the
image attributes in the measurement_images table, you will still need some custom code to perform
the actual storing of the binary image data somewhere on the server.

While working on the image-uploading code in the service, you need to think about what the business
rules will be for this feature. You need to come up with a scheme that ensures users can’t overwrite
each other’s image files if they have the same name. You also need to ensure that only one image is tied
to a particular entry date. Finally, you have to think about the characteristics of the image itself. This
includes determining which image formats will be supported, as well as what dimensions should be
allowed. Before moving on, let’s work through these issues in detail.

The first issue essentially requires that you come up with a solid naming convention that will guaran-
tee each uploaded image has a unique file name in the system. One way to solve this is to completely
ignore the actual file name being uploaded and instead create a new file name that is relevant to the
application. Because each logged-in user has a unique ID in the system, let’s start there. If you take
the currently logged-in user ID and append the text “measurement_image,” that would solve half of
our overall naming problem. For example, say a user with an ID of 125 is logged in and attempts to
upload an image named jim_loses_weight.jpg. The measurement service would convert that name to
125_measurement_image.jpg. At this point you, can even kill two birds with one stone and tie the
image to the selected entry date by including the entry date right in the file name, which would take
care of the requirement that only one image can be uploaded and tied to any given entry date.

In this example, assume the user was attempting to tie the image to the entry date of 12/20/09. Now
you would have the following file name: 125_12_20_09_measurement_image. Should the same user
try to upload another image on the currently selected date, the new image would overwrite the exist-
ing one because the file name created would be the same. Doing this ensures that the last uploaded
image is always the one being displayed for the selected entry date.

That takes care of the naming convention issue, but what about the image details such as dimen-
sions and size? Although you probably have a good amount of disk space available, you don’t want
to let users go too crazy here. It would be a huge mistake to put no restrictions at all on the file size,
as it would mean users could potentially upload high-resolution images that take up gigabytes of
space. Because the actual space that the image will be taking up on this page is relatively small, you
might as well restrict images to about 500KB to be safe. Now, when it comes to dimensions, you can
give the user a recommendation of 100x200, but if the user uploads something larger you should be
able to scale it easily enough using the Silverlight Image control.

534045c07.indd 285 3/13/10 4:51:03 PM

286 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

Another image-uploading issue you need to consider is what file types you should support for the
upload operation. The Silverlight Image control supports a wide range of image types but does not
support .gif files. This being the case, you should probably allow for any type of image other than
.gif. Because .gif files are still used quite frequently, you should let the user know that this image
type is not supported before prompting to search their hard drive for images to upload only to find
out that FitnessTrackerPlus doesn’t support this image type.

Finally, after coming to those decisions, you need to consider one more thing — where should the
uploaded images actually reside on the web server? The easiest thing to do here is just plan on creat-
ing a directory on the server called UserImages and place all images in that directory. Because the
directory will need to have write access enabled, you should place the UserImages directory under
the App_Data directory in the ASP.NET project. That should take care of the business logic related
to the uploading and storage of user images. Of course, there are about a million and one varia-
tions on this and any one of them would be valid. When developing your own sites, you will no
doubt need to come up with a variation on this scheme that best suits your own design goals. For
FitnessTrackerPlus, however, the proposed scheme will work just right.

User Interface Code Behind

In the code behind for the measurement log page, you can count on several event handlers to be
required. First, when the page is finished loading, you should get a list of valid measurement log
entry dates and update the GlobalCalendar day styles to reflect valid entry dates just as you did in
the previous two log pages. Next, in the page load event, all measurement log entries for the selected
date should be retrieved from the MeasurementService and displayed in the DataGrid control.
Remember, however, that you shouldn’t use the current date when retrieving these entries. Instead,
you should make use of the Globals.SelectedDate variable. Users could have already made a date
selection on one of the other two log pages and when they switch between the various log pages,
they will most likely still expect to see entries related to the last date that was selected. Once you
have the measurement log entries loaded, you then need to retrieve all of the available measurements
that can be recorded. You should have a ComboBox control to hold the list of measurements and the
ComboBox should be bound to the list of retrieved measurements. The MeasurementService should
already have a Query method that not only retrieves the default measurements but also any custom
measurements that may have been created by the user.

Once the page is loaded, it’s time to plan the necessary event handlers that will be required for users
to create new log entries. You should have a SelectionChanged event handler for the measurements
ComboBox that creates a new log entry in the database. The DataGrid should have the appropriate
data binding set up so that newly created entries automatically appear in the list.

Next up is supporting the creation of new custom measurements. By now you should be pretty
familiar with how custom entries are handled in FitnessTrackerPlus. You will need a new custom
measurement control that allows the user to create a new custom measurement. This control should
also let the user either select from one of the existing units of measure already in the database, or
just enter the name of a new custom unit of measure to be created along with the measurement.
Once the user is finished entering the details of the custom measurement, the code should create a
new entry in the measurements table, create a new entry in the measurement_units table if needed,

534045c07.indd 286 3/13/10 4:51:03 PM

Design ❘ 287

and finally, add a record to the measurements_units join table. After all of this is complete, the con-
trol should fire a custom event that the measurement log page can use to create a new log entry using
the newly created custom measurement. This mechanism seemed to work well for both the food and
exercise log pages so there is no compelling reason to change this custom entry mechanism now.

Updating existing log entries should be as simple as making use of the edit functionality of the
DataGrid control as you have done before. Users should be able to change the value as well as the
unit of measure when the selected row is in edit mode. The unit of measure editing template should
make use of a ComboBox control containing all of the units of measure that have been associated
with the selected measurement in the measurements_units join table. This will require the use of
another custom LoadOptions object being set in the DataContext of the MeasurementService.

The next area of the code behind that needs to be designed is the handling of the required calcula-
tor control. If a user selects the BMI measurement, you will need to override the appearance of the
TextBlock control in the measurement name column of the DataGrid. By default, the entry will
appear as a TextBlock control, but you should handle the LoadingRow event of the DataGrid and
swap it for a HyperlinkButton, which, when clicked, will display the appropriate calculator control.

Finally, you should expect to have all of the same DataGrid event handlers that were required by the
food and exercise log pages as well. This means that you should have handlers for selecting all rows
in the DataGrid using a custom CheckBox column header style. You should also have logic that will
delete all of the selected entries from the database.

Calculator Controls
Certain measurements that users need to log require more than just a simple trip to the scale or pull-
ing out the old measuring tape. A measurement such as BMI is a result of some basic calculations
using a few simple parameters. For the most part, this calculation is easily found on the Web, but it
would be nice if users didn’t have to leave FitnessTrackerPlus in order to figure out how to calculate
this value. Remember that anytime your users need to leave your site to find functionality that you
could have easily provided yourself, you run the risk of them finding you competitor’s web site and
staying there permanently. If users add this measurement type to their measurement log, you need to
provide them with an easy-to-use calculator control so they can enter the required parameters and
calculate the necessary values. This control should also have a mechanism in place to automatically
update the selected measurement value to reflect the calculation result. Because this first release of
FitnessTrackerPlus has only one default measurement that requires this functionality, you could eas-
ily have handled this scenario with a special case using an if statement like the following:

if (selection == “BMI”)
 ShowCalculatorBMI();

This solution, however, is not very robust and you would have to continue adding cases to the previ-
ous if statement should you decide to provide additional calculator controls in a future release. A
better solution is to implement a plug-in type system where new calculator implementations can easily
be added to the application. This first requires that you add a new table to the database to hold
records for each potential calculator control that you will be implementing. This table will be called
measurement_calculators, as shown in Table 7-6.

534045c07.indd 287 3/13/10 4:51:04 PM

288 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

table 7-6: measurement_calculators

ColUmn name tyPe DesCriPtion

id int Unique identity field for calculator

type_name varchar(100) Name of calculator class to instantiate

measurement_id int ID of associated measurement

In order to support dynamic creation of the calculator controls as opposed to hard coding entries in
the if statement, you would need to have a calculator entry in this table tied to a specific measure-
ment. For example, the BMI measurement might have the following row in the table:

id = 1, type_name = BodyMassIndexCalculator, measurement_id = 8

The type_name in this case refers to the UserControl type that you need to dynamically create. By
setting up the appropriate LoadOptions when retrieving measurement log entries, you can ensure that
if a given measurement has an associated calculator entry, then the calculator entity information will
be loaded and available in the code behind for the measurement log page. Basically, what this means is
that in the LoadingRow event handler for the DataGrid control, you could make use of the Activator
class in Silverlight to dynamically create an instance of the calculator with the following line of code:

UserControl calc = Activator.CreateInstance(type_name) as UserControl;

You now have an instance of the calculator object that you can throw into a modal ChildWindow and
display to the user. There is, however, one problem — you need to update the selected measurement
log entry with the results of the calculator. This was the whole reason for providing the calculator in
the first place. The previous line of code was simply casting the result of the CreateInstance method
to a generic UserControl. You could just as easily cast the result to a BodyMassIndexCalculator
object instead and have full access to the methods of the BodyMassIndexCalculator object like this:

BodyMassIndexCalculator calc = Activator.CreateInstance(type_name) as
BodyMassIndexCalculator;

Assuming the BodyMassIndexCalculator object exposed some kind of GetValue method, you
would then be able to easily update the measurement log entry in the DataGrid. There is, however,
a problem with this type of solution as well. While you can easily cast the result of CreateInstance
to a BodyMassIndexCalculator object, you would still need a custom if else statement in order to
decide between the BodyMassIndexCalculator and an alternate calculator control. You are really
no better off at this point; it’s back to the drawing board for a better solution. There is nothing
inherently wrong with casting to the actual object type that is stored in the database, but it doesn’t
remove the if else logic. To do this, you need to take this solution one step further, which requires
interface-based programming. If, rather than casting directly to the class type specified in the data-
base table, you cast to an interface, say IMeasurementCalculator, you don’t have to worry about
special if else logic to determine which object type to create. Every calculator control would really
just need a public CalculationComplete event and custom event handler that the measurement log
page can hook into in order to retrieve the calculated value. So for FitnessTrackerPlus, you use an
interface-based approach to dynamically create the required calculator controls.

534045c07.indd 288 3/13/10 4:51:05 PM

Solution ❘ 289

Now that you have a solid design in place for the calculator control interface logic, you need to design the
actual user interface for the specific calculator controls themselves. For the BodyMassIndexCalculator,
you create a data entry screen that allows the user to enter values that satisfy the equation for cal-
culating BMI, which is weight(kg)/height2 (m2). This means adding some TextBox controls for the
height and weight that are used in the calculation. You should also add a Button control to perform
the actual calculation and fire the CalculationComplete event to the measurement log page.

solUtion

At this point, you have all of the specified design details complete and it’s once again time to look
at the solution for the chapter. In this section, you will create an image-uploading mechanism that
makes use of a custom HTTP handler in the ASP.NET project. You will also see how to modify
the DataGrid control as it’s being loaded in order to support the display of the calculator con-
trols for measurements that require their use. What I won’t be covering in this solution is some of
the DataGrid logic that has already been covered in the previous two chapters. You have already
seen how to implement the Select/Deselect all DataGrid items logic, and you have also seen how to
delete existing entries both using the DomainContext as well as the new DomainDataSource control.
Instead of covering very similar code here for the measurement log page, I will be concentrating more
on image-uploading, creating new entries, custom measurements, and of course, the calculator con-
trol. If you happen to need a refresher on how entries are deleted from either the DomainDataSource
or DomainContext, you can always feel free to jump back to Chapters 5 and 6 or just fire up Visual
Studio and take a quick look at the source code for the measurement log page.

measurement log Page
The solution section for the measurement log will consist of a brief overview of the user interface
components required on the page followed by the usual format of database, data access, business
logic, and user interface code behind. Again, the emphasis for the solution will be on the image-
uploading implementation and the calculator plug-in system.

User Interface

The user interface for the measurement log consists of the usual DockPanel container along with
the ComboBox control to hold all available measurements; a Button control so users can create new
custom measurements; GlobalCalendar, which enables users to view past, present, and future mea-
surements should they ever find a valid reason to do so; and a DataGrid to hold all of the entries
being logged. The XAML code required to display the user interfaces is probably the easiest of the
three log pages. You’ve seen the DockPanel container setup that has been used for the previous log
pages, so there is no need to cover that area again. Instead, let’s start with the main data entry area
containing the ComboBox control and the custom measurements button. Here is the XAML for the
data entry area:

<StackPanel Style=”{StaticResource MeasurementEntryStackPanelStyle}”>
 <ComboBox x:Name=”Measurements”
Style=”{StaticResource MeasurementEntryComboBoxStyle}”
DisplayMemberPath=”measurement_name” />

534045c07.indd 289 3/13/10 4:51:06 PM

290 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

 <Button x:Name=”CustomMeasurement” Style=”{StaticResource
CustomMeasurementButtonStyle}” />
</StackPanel>

Code snippet MeasurementLog.xaml

The XAML is pretty straightforward, as it should be. You want users to just quickly select from the
measurements that are available in the ComboBox in order to create the actual entries in the measure-
ment log. Then they will go back and update the values and units of measure for the various entries
just as they do for foods and exercises.

Next up is the XAML for the DataGrid. This DataGrid will be bound using the DomainDataSource
control that was used in the previous chapter. In the following XAML code, notice how the measure-
ment name template is currently just a TextBlock control. This will change to a HyperlinkButton
if the measurement has an associated calculator plug-in that needs to be made available to assist in
entering the measurement value. You’ll see how that functionality works in the coverage of the code
behind page.

<data:DataGrid x:Name=”MeasurementLogGrid” Style=”{StaticResource DataGrid}”
ItemsSource=”{Binding Path=Data, ElementName=MeasurementData}” >
 <data:DataGrid.Columns>
 <data:DataGridTemplateColumn Header=”Measurements”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=Measurement.
measurement_name}” Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Value” HeaderStyle=”{StaticResource
DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=value}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 <data:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <TextBox Text=”{Binding Path=value, Mode=TwoWay}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellEditingTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Unit” HeaderStyle=”{StaticResource
DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=MeasurementUnit.unit}”
Style=”{StaticResource DataGridTextBlock}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>

534045c07.indd 290 3/13/10 4:51:07 PM

Solution ❘ 291

 <data:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <ComboBox x:Name=”Units”
DisplayMemberPath=”MeasurementUnit.unit” ItemsSource=”{Binding
Path=Measurement.MeasurementsUnits}” SelectedItem=”{Binding Path=MeasurementUnit,
Mode=TwoWay, Converter={StaticResource MeasurementUnitConverter}}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellEditingTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn HeaderStyle=”{StaticResource
DataGridColumnHeaderCheckBox}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <CheckBox x:Name=”DeleteEntry”
Style=”{StaticResource DataGridCheckBox}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
</data:DataGrid>
<ria_controls:DomainDataSource x:Name=”MeasurementData”
 DomainContext=”{StaticResource MeasurementContext}”
 QueryName=”GetMeasurementLogEntries” AutoLoad=”True”>
 <ria_controls:DomainDataSource.QueryParameters>
 <ria_controls:ControlParameter ParameterName=”entry_date”
 ControlName=”Calendar” PropertyName=”SelectedDate”
 RefreshEventName=”SelectedDatesChanged” />
 </ria_controls:DomainDataSource.QueryParameters>
</ria_controls:DomainDataSource>

Code snippet MeasurementLog.xaml

The only other area of interest in the DataGrid is the CellEditingTemplate column for the unit
of measure. You will be displaying a ComboBox containing all units of measure that are associated
with the measurement. You must be sure to bind the SelectedItem property to the unit of measure
assigned to the actual measurement log entry object, not to the collection of measurement units
itself or the two-way data binding will fail.

The XAML code for the GlobalCalendar uses the exact same technique used in the previous pages
in order to make sure that dates that have valid log entries associated with them are styled differently.
Here is the XAML for the GlobalCalendar declaration.

<StackPanel Style=”{StaticResource CalendarPanelStyle}”>
 <toolkit:GlobalCalendar x:Name=”Calendar”
Style=”{StaticResource CalendarStyle}”>
 <toolkit:GlobalCalendar.CalendarDayButtonStyleSelector>
 <fitnesstrackerplus_calendar:ValidMeasurementLogDateSelector>
 <fitnesstrackerplus_calendar:ValidMeasurementLogDateSelector.
ValidLogDateStyle>
 <Style BasedOn=”{StaticResource BasicDayButtonStyle}”
TargetType=”toolkit_primitives:GlobalCalendarDayButton”>
 <Setter Property=”Background” Value=”#FF999999” />
 </Style>

534045c07.indd 291 3/13/10 4:51:08 PM

292 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

 </fitnesstrackerplus_calendar:ValidMeasurementLogDateSelector.
ValidLogDateStyle>
 <fitnesstrackerplus_calendar:ValidMeasurementLogDateSelector.
InvalidLogDateStyle>
 <Style BasedOn=”{StaticResource BasicDayButtonStyle}”
TargetType=”toolkit_primitives:GlobalCalendarDayButton”>
 <Setter Property=”Background” Value=”#FFFFFFFF” />
 </Style>
 </fitnesstrackerplus_calendar:ValidMeasurementLogDateSelector.
InvalidLogDateStyle>
 </fitnesstrackerplus_calendar:ValidMeasurementLogDateSelector>
 </toolkit:GlobalCalendar.CalendarDayButtonStyleSelector>
 </toolkit:GlobalCalendar>
</StackPanel>

Code snippet MeasurementLog.xaml

Finally, you are left with the current image of the user that needs to be displayed. There is no guarantee
that any image will actually exist for the currently selected date, so you should plan on displaying a blank
“Image not available” image for that particular scenario. This image should be part of the Silverlight proj-
ect and can be added as a resource to a new Images folder in the project. You can easily create this default
image in your favorite image editing software, or you can just use the image_unavailable.png file that I
have made available in the source code under the Image directory of the Silverlight project. In order to
display this image, you should add a new Image control to the right of the DataGrid and set dimensions
to 150 × 200 and the Source property to /Images/image_unavailable.png, as shown in the following
XAML code.

<Style x:Key=”CurrentImageStyle” TargetType=”Image”>
 <Setter Property=”Margin” Value=”10,0,0,0” />
 <Setter Property=”Width” Value=”150” />
 <Setter Property=”Height” Value=”200” />
 <Setter Property=”Stretch” Value=”Fill” />
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Source” Value=”/Images/image_unavailable.png” />
</Style>
<Style x:Key=”CurrentImageBorderStyle” TargetType=”Border”>
 <Setter Property=”BorderThickness” Value=”2” />
 <Setter Property=”BorderBrush” Value=”#FF000000” />
 <Setter Property=”Width” Value=”150” />
 <Setter Property=”Height” Value=”200” />
 <Setter Property=”HorizontalAlignment” Value=”Right” />
</Style>
<Border Style=”{StaticResource CurrentImageBorderStyle}”>
 <Image x:Name=”CurrentImage” Style=”{StaticResource CurrentImageStyle}” />
</Border>

Code snippet MeasurementLog.xaml

534045c07.indd 292 3/13/10 4:51:09 PM

Solution ❘ 293

This image size should be sufficient for most users, and if there is an image associated with the cur-
rently selected date, then the unavailable image will be replaced with the stored image in the code
behind logic. Once all of this is complete, you should be left with a user interface like the one shown
in Figure 7-2.

FigUre 7-2

Database

For the database solution, you will need to create all of the required tables outlined in the design.
Figure 7-3 shows the complete database schema for the measurement log page.

In addition to creating the tables and relationships, you also need to add a unique index to the
measurement_images table. This will ensure that for any given entry date, users will have only one
associated image. You should add a new index called UIX_measurement_images and select both
the file_name and user_id columns. The combination of both should take care of the unique image
requirement because the entry date is embedded in the file_name column as part of the custom
naming convention that was designed.

534045c07.indd 293 3/13/10 4:51:09 PM

294 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

FigUre 7-3

Data Access

The data access part of this solution is completed by dragging all of the required tables onto a new
LINQ to SQL class called Measurements.dbml. You should also rename any entities according to
the LINQ to SQL entity naming convention that has been used throughout the project. Figure 7-4
shows the designer window with the final entity definitions.

FigUre 7-4

534045c07.indd 294 3/13/10 4:51:10 PM

Solution ❘ 295

Business Logic

For the business logic solution, you will need to add a new DomainService called MeasurementsService
to the Services folder in the ASP.NET project. When creating the service, you want to point the
wizard to the MeasurementDataContext and be sure to select all of the entities in the list. You
should also go ahead and enable editing for all entities as well as check the “create metadata” option.
Once the service is created, you need to make some modifications to some of the generated methods
and metadata classes. The first area to concentrate on is the GetMeasurements method. You want
to ensure that both default and custom measurements are retrieved here, so you will need to add the
current user ID as a parameter to the method and modify the LINQ statement to include the user ID
when retrieving the measurements. Here is the updated GetMeasurements code:

public IQueryable<Measurement> GetMeasurements(int user_id)
{
 DataLoadOptions options = new DataLoadOptions();

 options.LoadWith<Measurement>(e => e.MeasurementsUnits);
 options.LoadWith<MeasurementsUnits>(e => e.MeasurementUnit);
 this.DataContext.LoadOptions = options;

 List<Measurement> measurements = (from c in this.DataContext.Measurements
 where (c.user_id == 1 || c.user_id ==
 user_id)
 orderby c.measurement_name ascending
 select c).ToList<Measurement>();

 measurements.Insert(0, new Measurement
 {
 id = -1,
 measurement_name = “Please select a measurement”
 });

 return measurements.AsQueryable<Measurement>();
}

Code snippet MeasurementService.cs

Notice how a custom DataLoadOptions is also used here. You need to ensure that all associated units
of measure are also retrieved so that when a measurement is selected in the ComboBox control, you
can create a new measurement log entry using a default unit of measure. Because you essentially
have a many-to-many relationship between measurements and measurement units, LINQ to SQL
requires the use of the measurements_measurement_units join table entity so the DataLoadOptions
ensures that, for all entries in the join table relationship, all units of measure are also loaded.

Next is the measurement log retrieval; now you need a parameter for the entry date and user ID.
You also need to retrieve any units of measure that are associated with the measurement being
logged. Again, this requires the use of a custom DataLoadOptions object.

534045c07.indd 295 3/13/10 4:51:10 PM

296 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

public IQueryable<MeasurementLogEntry> GetMeasurementLogEntries(int user_id,
DateTime entry_date)
{
 DataLoadOptions options = new DataLoadOptions();

 options.LoadWith<Measurement>(e => e.MeasurementsUnits);
 options.LoadWith<Measurement>(e => e.Calculator);
 options.LoadWith<MeasurementsUnits>(e => e.MeasurementUnit);
 options.LoadWith<MeasurementLogEntry>(e => e.Measurement);
 options.LoadWith<MeasurementLogEntry>(e => e.MeasurementUnit);

 this.DataContext.LoadOptions = options;

 return this.DataContext.MeasurementLogEntries.Where(e => e.user_id ==
 user_id &&
 e.entry_date.Date ==
 entry_date.Date);
}

Code snippet MeasurementService.cs

Don’t forget that in addition to the DataLoadOptions, you still need to add the [Include] attribute
on the entities you are trying to return. The following code highlights which areas of the metadata need
to be modified to ensure that both the GetMeasurements and GetMeasurementLogEntries methods
retrieve the required data correctly.

[MetadataTypeAttribute(typeof(MeasurementLogEntry.MeasurementLogEntryMetadata))]
public partial class MeasurementLogEntry
{
 internal sealed class MeasurementLogEntryMetadata
 {
 private MeasurementLogEntryMetadata()
 {
 }

 public DateTime entry_date;

 public int id;

 [Include]
 public Measurement Measurement;

 public int measurement_id;

 public MeasurementUnit MeasurementUnit;

 public int unit_id;

 public int user_id;

 public Nullable<double> value;
 }
}

[MetadataTypeAttribute(typeof(Measurement.MeasurementMetadata))]
public partial class Measurement

534045c07.indd 296 3/13/10 4:51:11 PM

Solution ❘ 297

{
 internal sealed class MeasurementMetadata
 {
 private MeasurementMetadata()
 {
 }

 public int id;

 [Required]
 [Display(Name = “Measurement Name:”)]
 public string measurement_name;

 public EntitySet<MeasurementLogEntry> MeasurementLogEntries;

 [Include]
 public EntitySet<MeasurementsUnits> MeasurementsUnits;

 [Required]
 public int user_id;

 [Include]
 public MeasurementCalculator Calculator;
 }
}

[MetadataTypeAttribute(typeof(MeasurementsUnits.MeasurementsUnitsMetadata))]
public partial class MeasurementsUnits
{
 internal sealed class MeasurementsUnitsMetadata
 {
 private MeasurementsUnitsMetadata()
 {
 }

 public int id;

 public Measurement Measurement;

 public int measurement_id;

 [Include]
 public MeasurementUnit MeasurementUnit;

 public int unit_id;
 }
}

Code snippet MeasurementService.metadata.cs

The remaining operations required for management of both measurements and log entries are the
same as you have seen in previous chapters, so I won’t bother covering the details of these again
here. Instead, it’s time to shift the focus to the handling of the current image. Image-uploading will

534045c07.indd 297 3/13/10 4:51:11 PM

298 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

require a couple of major areas of code. Users will need to be able to select an image file from their
local hard drive and upload the raw bytes to the web server. That piece of code will be covered in
the code behind discussion. At the web server level, however, you need to have code running that
will save the uploaded image to a predetermined directory. There are several ways to accomplish this
task. One way is to design a web service with a specific image-uploading method. This, however,
can sometimes lead to a lot of overhead for the web service payload. Another more optimized solu-
tion is to create a new generic ASP.NET request handler. For the FitnessTrackerPlus application,
you will make use of the custom handler solution. If you are not familiar with custom handlers,
you should be sure to check out Wrox Professional ASP.NET 3.5 in C# and VB.NET (ISBN: 978-
0470187579). For your needs, you will be creating a rather trivial handler, so this shouldn’t be ter-
ribly difficult. In order to get started building the handler, just right-click on the ASP.NET project
and select the “add new item” option. Once the wizard is up, you will want to select a new Generic
Handler, as shown in Figure 7-5.

FigUre 7-5

You can go ahead and call this new handler ImageUpload.ashx. Next you need to implement the
ProcessRequest method of the IHttpHandler interface. In the following code, the file name being
uploaded will reside in the query string and I should be using the naming convention outlined in the
design earlier. After extracting the file name, you simply create the new file in the UploadedImages
directory and write the raw image file bytes that exist in the Request.InputStream object.

534045c07.indd 298 3/13/10 4:51:12 PM

Solution ❘ 299

 [WebService(Namespace = “http://fitnesstrackerplus.com/”)]
[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class ImageUpload: IHttpHandler
{
 public void ProcessRequest(HttpContext context)
 {
 try
 {
 string file_name = context.Request.QueryString[“file_name”];

 if (!String.IsNullOrEmpty(file_name))
 {
 // Check if file exists on server if it does delete it

 if (File.Exists(context.Server.MapPath(String.Format
(“~/UploadedImages/{0}”, file_name))))
 File.Delete(context.Server.MapPath(String.Format
(“~/UploadedImages/{0}”, file_name)));

 FileStream file = File.Create(context.Server.MapPath
(String.Format(“~/UploadedImages/{0}”, file_name)));
 byte[] image_buffer = new byte[4096];
 int bytes_read = 0;

 while ((bytes_read = context.Request.InputStream.Read
(image_buffer, 0, image_buffer.Length)) != 0)
 file.Write(image_buffer, 0, bytes_read);

 file.Close();
 }
 }
 catch (Exception ex)
 {
 }
 }

 public bool IsReusable
 {
 get { return false; }
 }
}

Code snippet ImageUpload.ashx.cs

There are two things to watch out for here:

You must not forget to actually create the directory in the ASP.NET project structure.➤➤

You need to ensure that the ASP.NET worker process has been given write access to this ➤➤

new directory. Otherwise, an exception will be thrown on any of the File operations being
executed.

534045c07.indd 299 3/13/10 4:51:12 PM

300 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

If you are using a shared hosting solution, you will need to work with the appropriate technical sup-
port personnel to ensure that you can create this directory with the appropriate permissions setup.
When the server code to handle saving the uploaded image is complete, you then need to modify
the code that returns the current image to the client. After the service code is generated by default,
you are left with a GetMeasurementImages query method that returns an IQueryable object. Users
should have only one image tied to any particular entry date, so you should replace this generated
method with the one shown in the following code to ensure that only one image is returned for the
specified entry date and user.

public MeasurementImage GetMeasurementImage(int user_id, DateTime entry_date)
{
 return this.DataContext.MeasurementImages.Where(e => e.user_id == user_id &&
 e.entry_date.Date ==
 entry_date.Date).
 SingleOrDefault();
}

Code snippet MeasurementService.cs

That pretty much takes care of the measurement log business logic, so let’s move on to implementing
the code behind and control event handlers including the Silverlight client code that actually will be
responsible for pushing the raw uploaded image data to your newly created handler.

User Interface Code Behind

The first thing to work on in the code behind is the Loaded event. First, you need to load all avail-
able measurements into the ComboBox control, so that users will be able to create new measurement
log entries.

context.Load<FitnessTrackerPlus.Web.Data.Measurement>(context.GetMeasurementsQuery
(Globals.CurrentUser.id),
LoadBehavior.RefreshCurrent, (MeasurementsLoaded) =>
{
 if (!MeasurementsLoaded.HasError)
 {
 Measurements.ItemsSource = MeasurementsLoaded.Entities;
 Measurements.SelectedIndex = 0;
 }

}, null);

Code snippet MeasurementLog.xaml.cs

In addition to loading the control, you need to create a new lambda expression to handle
the SelectionChanged event. The lambda expression will simply make a call to the
CreateMeasurementLogEntry method passing in the selected measurement.

Measurements.SelectionChanged += (se, ev) =>
{
 FitnessTrackerPlus.Web.Data.Measurement selected = Measurements.SelectedItem
as FitnessTrackerPlus.Web.Data.Measurement;

534045c07.indd 300 3/13/10 4:51:13 PM

Solution ❘ 301

 if (selected.id > 0)
 CreateMeasurementLogEntry(selected);
};

Code snippet MeasurementLog.xaml.cs

Once again, the DomainDataSource control will be used to bind measurement log entries to the
DataGrid control. The required ControlParameter for handling date selection on the GlobalCalendar
control was added in the XAML code. The GetMeasurementLogEntries method still requires the
current user ID as a parameter, so you will also need to manually add the user ID parameter to the
DomainDataSource QueryParameters collection as shown:

Parameter user_id = new Parameter();
user_id.ParameterName = “user_id”;
user_id.Value = Globals.CurrentUser.id;

// Ensure that the user_id parameter is set for the DomainDataSource control before
// the query is executed

MeasurementData.QueryParameters.Add(user_id);

Code snippet MeasurementLog.xaml.cs

Just as you did for the exercise log page, you will also set up a custom binding for the ProgressBar
control so that it will automatically be made visible whenever the current DomainContext is loading
data. You’ve seen this code already, so I won’t bother going through it again. Just remember that in
order for it to work, you must make use of the ProgressBarVisibilityConverter class to convert
the bool IsLoading property to a valid Visibility value.

As far as the various event handlers required for handling Delete and Select/Deselect operations
on the DataGrid, they will all be implemented the same way as they have been in the previous log
pages, so there is no need to cover them again here.

Creating new log entries is very similar to what was done for the previous log pages. You’ve seen
that the measurements ComboBox control is set up to handle the SelectionChanged event and call
into the private CreateMeasurementLogEntry method, as shown in the following code:

private void CreateMeasurementLogEntry(FitnessTrackerPlus.Web.Data.Measurement
measurement)
{
 MeasurementLogEntry entry = new MeasurementLogEntry();

 IEnumerator units = measurement.MeasurementsUnits.GetEnumerator();
 units.MoveNext();

 entry.measurement_id = measurement.id;
 entry.entry_date = Globals.SelectedDate;
 entry.user_id = Globals.CurrentUser.id;
 entry.unit_id = (units.Current as MeasurementsUnits).unit_id;

 context.MeasurementLogEntries.Add(entry);

534045c07.indd 301 3/13/10 4:51:14 PM

302 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

 context.SubmitChanges((ChangesSubmitted) =>
 {
 if (!ChangesSubmitted.HasError)
 MeasurementData.Load();

 }, null);
}

Code snippet MeasurementLog.xaml.cs

Of course, this method is shared by both the measurements ComboBox control as well as the Click
event handler of the custom measurement button. As you can see, a default unit of measure is
assigned before creating the entry. You can use the first unit of measure in the collection because the
MeasurementsUnits entity list was retrieved along with the selected measurement through the use
of the custom DataLoadOptions in the LINQ query.

The final area of concern for the code behind is the image-uploading feature that is invoked when
users click the update image Button control. The Click event handler needs to perform the follow-
ing actions:

Display the ➤➤ OpenFileDialog control, so that users can choose an image from their hard
drive

Upload the raw image bytes to the custom ASP.NET ➤➤ ImageUpload handler

Add an entry to the measurement_images table➤➤

Refresh the image currently displayed on the page.➤➤

First up on the list is the Silverlight OpenFileDialog control. Silverlight provides this useful control,
so that you can give your users the ability to select and open files from their own hard drive in a
Silverlight application. You want users to only be able to select from image types that are supported
by Silverlight, so to be safe you should set the Filter property of the control to a filter string that
allows for only .png and .jpg file types, as shown in the following code:

OpenFileDialog dialog = new OpenFileDialog();

dialog.Multiselect = false;
dialog.Filter = “Supported Images (*.png, *.jpg)|*.png;*.jpg|PNG Images
(*.png)|*.png|JPG Images (*.jpg)|*.jpg”;

Code snippet MeasurementLog.xaml.cs

After opening the file, you should check the file size because the design calls for a file size restriction
of no more than 500KB. The control provides some basic file information, so checking the file size
is as simple as checking the Length property of the file that was selected.

if (dialog.File.Length > 512000)
 MessageBox.Show(“Only images up to 500KB are supported”);

Code snippet MeasurementLog.xaml.cs

534045c07.indd 302 3/13/10 4:51:14 PM

Solution ❘ 303

The next step is to modify the file name, so that it adheres to the naming conventions outlined in the
design step. A simple String.Format method call that combines the selected date, user ID, and file
extension will do the trick.

string finalFileName = “”;

finalFileName = String.Format(“{0}_{1}_measurement_image{2}”,
Globals.CurrentUser.id, Globals.SelectedDate.ToString(“MM_dd_yyyy”),
dialog.File.Extension);

Code snippet MeasurementLog.xaml.cs

The only piece of the original file name that should remain intact is the file extension itself. After you
have the proper name created, it’s time to upload the raw bytes of the file to the custom ASP.NET
handler created earlier. This involves making use of the WebClient class in the System.Net namespace.
You just need to create a new URI to the handler and be sure to set up the query string variable to
the newly created file name. The following code opens up the connection to the handler:

WebClient client = new WebClient();
client.OpenWriteAsync(new Uri(String.Format(“http://localhost:1154/
ImageUpload.ashx?file_name={0}”,
finalFileName), UriKind.Absolute));

Code snippet MeasurementLog.xaml.cs

Because opening the connection to the handler is an asynchronous operation, the bulk of the image-
uploading code will reside in the OpenWriteCompleted event handler. In this handler, the file is
opened and the raw bytes are read from the file and written out to the newly created handler con-
nection. After the file is written to the stream, both the file and connection handlers are closed.

client.OpenWriteCompleted += (s, ev) =>
{
 if (ev.Error == null)
 {
 FileStream file_stream = dialog.File.OpenRead();
 byte[] image_buffer = new byte[4096];
 int bytes_read = 0;

 if(file_stream != null)
 {
 while ((bytes_read = file_stream.Read(image_buffer, 0,
image_buffer.Length)) != 0)
 ev.Result.Write(image_buffer, 0, bytes_read);

 file_stream.Close();
 ev.Result.Close();

 }
 }
};

Code snippet MeasurementLog.xaml.cs

534045c07.indd 303 3/13/10 4:51:15 PM

304 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

With the image upload complete, you then need to ensure that the measurement_images table is
updated to reflect the new image that has been assigned to the selected entry date. This requires
you to make use of the current DomainContext that was loaded earlier and submit the changes to
the MeasurementImages entity list.

context.MeasurementImages.Add(new MeasurementImage
{
 entry_date = Globals.SelectedDate,
 user_id = Globals.CurrentUser.id,
 file_name = finalFileName
});

context.SubmitChanges();

Code snippet MeasurementLog.xaml.cs

Finally, it’s time to actually update the image that is currently being displayed to the user. Because
the images will all reside in the UploadedImages directory on the web server, you should be able to
simply create a new BitmapImage object pointing to the correct URI and set the Source property of
the Image control to the new BitmapImage. Before creating the URI, you should set up a conditional
compiler statement to ensure that during debugging you are setting the URI to the localhost:port
address and that when a release mode build is created, the URI will point to the production
FitnessTrackerPlus address.

BitmapImage updatedImage = null;
#if DEBUG
 updatedImage = new BitmapImage(new
Uri(String.Format(“http://localhost:1154/UploadedImages/{0}”,
finalFileName), UriKind.Absolute));

#else
 updatedImage = new BitmapImage(new
Uri(String.Format(“http://fitnesstrackerplus.com/UploadedImages/{0}”,
finalFileName), UriKind.Absolute));
#endif

CurrentImage.Source = updatedImage;

Code snippet MeasurementLog.xaml.cs

There is one last problem with the previous code. If a user has selected a given date and uploads the
wrong image file by mistake, he or she can easily click the Update Image button to upload another
image. Unfortunately, only the previously uploaded image will again be displayed. This occurs because
you are not changing the file name when the second image is uploaded. Because the file name has
not changed, Silverlight takes it upon itself to cache the previous image. Only a complete browser
refresh seems to fix the issue. Luckily, there is something else you can do in the code to help in this
situation. The BitmapImage object exposes a CreateOptions property that actually will let you
manipulate the default caching mechanism used for the image. So by adding one more line of code
before setting the Source property of the CurrentImage control, you can be assured that the last
uploaded image will always be the one displayed.

534045c07.indd 304 3/13/10 4:51:15 PM

Solution ❘ 305

// This is necessary to ensure that Silverlight refreshes the image even though
// the file name remains the same

updatedImage.CreateOptions = BitmapCreateOptions.IgnoreImageCache;
CurrentImage.Source = updatedImage;

Code snippet MeasurementLog.xaml.cs

Another thing to watch out for: although you have a ControlParameter set up on the DomainDataSource
to take care of refreshing the measurement log entries when the user selects a new date from the
GlobalCalendar control, you don’t have a mechanism in place to also refresh the CurrentImage
control. The following code in the SelectionChanged event handler ensures that the latest image is
being displayed for the newly selected date.

Calendar.SelectedDatesChanged += (se, ev) =>
{
 if (Calendar.SelectedDate.HasValue)
 {
 Globals.SelectedDate = Calendar.SelectedDate.Value;

 LoadCurrentImage();
 }
};

private void LoadCurrentImage()
{
 context.Load<MeasurementImage>(context.GetMeasurementImageQuery
(Globals.CurrentUser.id, Globals.SelectedDate),
MergeOption.OverwriteCurrentValues, (ImageLoaded) =>
 {
 if (!ImageLoaded.HasError)
 {
 IEnumerator<MeasurementImage> enumerator =
ImageLoaded.Entities.GetEnumerator();
 enumerator.MoveNext();

 MeasurementImage image = enumerator.Current;

 if (image != null)
 {
 BitmapImage updatedImage = null;
#if DEBUG
 updatedImage = new BitmapImage(new
Uri(String.Format(“http://localhost:1154/UploadedImages/{0}”,
image.file_name), UriKind.Absolute));
#else
 updatedImage = new BitmapImage(new
Uri(String.Format(“http://fitnesstrackerplus.com/UploadedImages/{0}”,
image.file_name), UriKind.Absolute));
#endif

 updatedImage.CreateOptions =
BitmapCreateOptions.IgnoreImageCache;

534045c07.indd 305 3/13/10 4:51:15 PM

306 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

CurrentImage.Source = updatedImage;
 }
 else
 CurrentImage.Source = new BitmapImage(new
Uri(“/Images/image_unavailable.png”, UriKind.Relative));
 }
 else
 CurrentImage.Source = new BitmapImage(new Uri(“/Images/
image_unavailable.png”, UriKind.Relative));

 }, null);
}

Code snippet MeasurementLog.xaml.cs

With the image handling code completed, you now just need to add the code that will be responsible
for displaying the calculator plug-in when a measurement requiring a calculator is being updated.
In order to do this, you will need to find a way to change the TextBlock control being used in the
measurement name column to a HyperlinkButton control that will give users something to click in
order to trigger the display of the calculator. The only way that you can make this switch is to cre-
ate a new event handler for the LoadingRow event of the DataGrid control. In the following code,
the current measurement log entry is checked to see if there are any associated calculator controls.
If so, a new HyperlinkButton control is created with a Click event handler that will display a new
modal ChildWindow containing the appropriate calculator control.

private void MeasurementLogGrid_LoadingRow(object sender, DataGridRowEventArgs e)
{
 MeasurementLogEntry entry = e.Row.DataContext as MeasurementLogEntry;

 // If this entry has a valid calculator associated then change the TextBlock
 // to a HyperlinkButton that when clicked will use the Activator object to
 // dynamically create the appropriate calculator plug-in

 if (entry.Measurement.MeasurementCalculators.Count > 0)
 {
 TextBlock measurementName = MeasurementLogGrid.Columns[0].
GetCellContent(e.Row) as TextBlock;

 if (measurementName != null)
 {
 DataGridCell cell = measurementName.Parent as DataGridCell;
 HyperlinkButton calculatorLink = new HyperlinkButton();

 calculatorLink.Content = entry.Measurement.measurement_name;

 // Repace the TextBlock with the HyperlinkButton control

 cell.Content = calculatorLink;
 }
 }
}

Code snippet MeasurementLog.xaml.cs

534045c07.indd 306 3/13/10 4:51:16 PM

Solution ❘ 307

In order to dynamically create an instance of the calculator plug-in, you will need to make use of
the static Activator class and its CreateInstance method. CreateInstance takes a Type object
as its parameter and currently all you have is a type string. Don’t worry — the static Type class
has a GetType method that, wouldn’t you know it, takes a string. Remember, however, that you
need to create an instance of the IMeasurementCalculator interface in order to hook into the
CalculationComplete event of the control and update the selected measurement log entry value.
All of this should take place in the Click event handler of the newly created HyperlinkButton
control. The following code shows this event handler implementation.

calculatorLink.Click += (s, ev) =>
{
 ChildWindow modalWindow = new ChildWindow();
 IMeasurementCalculator calc =
Activator.CreateInstance(Type.GetType(String.Format(“FitnessTrackerPlus.
Views.Measurement.Calculators.{0}”, entry.Measurement.Calculator.type_name)))
as IMeasurementCalculator;

 calc.CalculationCancelled += (se, eve) => { modalWindow.Close(); };
 calc.CalculationComplete += (se, eve) =>
 {
 modalWindow.Close();

 entry.value = calc.CalculatedValue;
 context.SubmitChanges();
 };

 modalWindow.Title = String.Format(“{0} Calculator”,
entry.Measurement.measurement_name);
 modalWindow.Content = calc;
 modalWindow.Show();
};

Code snippet MeasurementLog.xaml.cs

Calculator Controls
This version of FitnessTrackerPlus provides a calculator plug-in control to assist users in calculating
BMI. The calculation is well known and can be found in most fitness books or online at Wikipedia
or many other fitness sites. Of course, the actual calculation equations, although interesting, are
not the main focal point of this topic. Instead, this section will focus on the user interface and
IMeasurementCalculator implementations that are required in order for the code behind to prop-
erly create and make use of the plug-in controls and their calculated values.

Calculating Body Mass Index

In the code behind logic, you used the Activator class to create an instance of the appropriate calcu-
lator control and all calculator type strings began with FitnessTrackerPlus.Views.Measurement
.Calculators. Therefore, you should plan on adding a new calculator control to the Views
.Measurement.Calculators folder, which is of course where the IMeasurementCalculator inter-
face class currently resides. For this control, you should add a new UserControl to the folder called

534045c07.indd 307 3/13/10 4:51:16 PM

308 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

BodyMassIndexCalculator. This calculator requires the user to enter both height and weight in
either standard or metric units of measure. In the following XAML code, a DataForm control is
used to generate the actual user interface. Although you aren’t using entities returned from the WCF
RIA Services, note that you can still use the DataForm and manually add appropriate form labels to
help walk the user through the data entry process. Listing 7-1 shows the XAML code required for
the BodyMassIndexCalculator control.

listing 7-1: BodyMassIndexCalculator.xaml

<UserControl x:Class=”FitnessTrackerPlus.Views.Measurement.Calculators.
BodyMassIndexCalculator”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:data_dataform=”clr-
 namespace:System.Windows.Controls;
 assembly=System.Windows.Controls.Data.DataForm.Toolkit”>
 <UserControl.Resources>
 <Style x:Key=”BodyMassIndexFormStyle”
TargetType=”data_dataform:DataForm”>
 <Setter Property=”AutoEdit” Value=”True” />
 <Setter Property=”AutoGenerateFields” Value=”False” />
 <Setter Property=”Foreground” Value=”#FF000000” />
 </Style>
 <Style x:Key=”SmallTextBoxStyle” TargetType=”TextBox”>
 <Setter Property=”FontSize” Value=”10” />
 <Setter Property=”TextAlignment” Value=”Center” />
 <Setter Property=”Width” Value=”60” />
 </Style>
 </UserControl.Resources>
 <data_dataform:DataForm x:Name=”BodyMassIndexForm” Style=”{StaticResource
BodyMassIndexFormStyle}”>
 <data_dataform:DataForm.EditTemplate>
 <DataTemplate>
 <StackPanel>
 <data_dataform:DataField Label=”Unit of Measure”>
 <ComboBox x:Name=”Units”>
 <ComboBoxItem Content=”Standard (lbs, in)”
IsSelected=”True” />
 <ComboBoxItem Content=”Metric (kg, cm)” />
 </ComboBox>
 </data_dataform:DataField>
 <data_dataform:DataField Label=”Height”>
 <TextBox x:Name=”HeightText”
Text=”{Binding Path=Height, Mode=TwoWay}” Style=”{StaticResource
SmallTextBoxStyle}” />
 </data_dataform:DataField>
 <data_dataform:DataField Label=”Weight”>
 <TextBox x:Name=”WeightText”
Text=”{Binding Path=Weight, Mode=TwoWay}” Style=”{StaticResource
SmallTextBoxStyle}” />
 </data_dataform:DataField>

534045c07.indd 308 3/13/10 4:51:16 PM

Solution ❘ 309

 </StackPanel>
 </DataTemplate>
 </data_dataform:DataForm.EditTemplate>
 </data_dataform:DataForm>
</UserControl>

If you are wondering whether or not you can still get the benefits of DataForm validation without
using the WCF RIA Services entities, you need not worry. As you will soon see, you can easily set
the CurrentItem property of the DataForm to any custom class and still make use of the validation
rules and data annotations that are typically made available in the WCF RIA Services metadata
files. Because you aren’t using any existing entity that is exposed from the WCF RIA Services, you
need to first create a new class in the code behind file called BodyMassIndexParams. This class will
hold the Height and Weight properties that the controls in the DataForm will bind to. By adding a
statement for the System.ComponentModel.DataAnnotations namespace, you can easily add vali-
dation attributes to both of these properties.

public class BodyMassIndexParams
{
 [Required]
 [Display(Name=”Height”)]
 public double? Height { get; set; }

 [Required]
 [Display(Name = “Weight”)]
 public double? Weight { get; set; }
}

Code snippet BodyMassIndexCalculator.xaml.cs

Now that you have a class to hold the binding values, you can set the CurrentItem property of the
DataForm to a new empty instance of BodyMassIndexParams in the Loaded event handler.

Loaded += (s, e) =>
{
 BodyMassIndexForm.CommandButtonsVisibility =
DataFormCommandButtonsVisibility.Commit |
DataFormCommandButtonsVisibility.Cancel;
 BodyMassIndexForm.EditEnded += new
EventHandler<DataFormEditEndedEventArgs>(BodyMassIndexForm_EditEnded);
 BodyMassIndexForm.CurrentItem = new BodyMassIndexParams
 {
 Height = null,
 Weight = null
 };
};

Code snippet BodyMassIndexCalculator.xaml.cs

As you saw earlier, the measurement log page code behind relies on using only IMeasurementCalculator
objects in order to actually update values in the database. The BodyMassIndexCalculator class needs to
implement the required property and event in order for the plug-in to work.

534045c07.indd 309 3/13/10 4:51:17 PM

310 ❘ ChaPter 7 Am I WorkIng HArd EnougH?

#region IMeasurementCalculator Members

 public event EventHandler CalculationComplete;
 public event EventHandler CalculationCancelled;

 public double CalculatedValue { get; set; }

#endregion

Code snippet BodyMassIndexCalculator.xaml.cs

The final step in this control is to actually calculate the BMI and fire the CalculationComplete
event, so that the measurement log page can update the selected measurement log entry with the
CalculatedValue property of the BodyMassIndexCalculator control.

private void BodyMassIndexForm_EditEnded(object sender,
DataFormEditEndedEventArgs e)
{
 ComboBox units = BodyMassIndexForm.FindNameInContent(“Units”) as ComboBox;
 TextBox heightText = BodyMassIndexForm.FindNameInContent(“HeightText”) as
TextBox;
 TextBox weightText = BodyMassIndexForm.FindNameInContent(“WeightText”) as
TextBox;

 if (e.EditAction == DataFormEditAction.Cancel && CalculationCancelled != null)
 CalculationCancelled(this, null);
 else
 {
 // Calculate the approx body mass index formula is kg / m2
 // convert lbs to kg and ft to m if necessary first

 double weightValue = Convert.ToDouble(weightText.Text);
 double heightValue = Convert.ToDouble(heightText.Text);

 if ((units.SelectedItem as ComboBoxItem).Content.ToString() ==
“Standard (lbs, in)”)
 {
 heightValue *= 0.305;
 weightValue *= 0.454;
 }

 // Body Mass Index is usually represented as an integer so
 // cast the result

 CalculatedValue = (int)(weightValue / Math.Pow(heightValue, 2));

 if (CalculationComplete != null)
 CalculationComplete(this, null);
 }
}

Code snippet BodyMassIndexCalculator.xaml.cs

534045c07.indd 310 3/13/10 4:51:17 PM

Summary ❘ 311

When this is complete, you should have a nice and easy way to assist users in calculating
their BodyMassIndex value without forcing them to actually leave the site. Figure 7-6 shows the
BodyMassIndex calculator in action.

FigUre 7-6

sUmmary

Well that’s finally it! You now have all three of the major data entry screens complete. FitnessTrackerPlus
is finally really starting to feel like a more polished line-of-business application. You’ve seen how to
make use of some newer controls such as the DomainDataSource, GlobalCalendar, and DataForm.
You have seen how to make use of the new WCF RIA Services and metadata feature to provide CRUD
operations on your generated LINQ to SQL entities complete with client-side validation. You have
also seen how to create a basic plug-in system for fitness calculators by using the static Activator
class and interface-based programming. Now with all of the required data entry screens complete,
it’s time to go back and finish up that Dashboard screen because you now have some actual data to
make use of.

534045c07.indd 311 3/13/10 4:51:17 PM

534045c07.indd 312 3/13/10 4:51:17 PM

Unfinished Business
Finishing up the Dashboard Page

With all of the data entry pages complete, it’s time to turn your attention back to the dashboard
page that greets users who have logged into the application. At this point, after logging into
the application, users are presented with a dashboard page that contains several summary
controls that currently have no functionality behind them. Sure, the site announcements are
working, but the rest of the page offers nothing to the users.

You could make the argument that these summary pages should have been completed during
the original dashboard implementation, but I felt that until you had created pages that actu-
ally allowed you to create log entries it would be difficult to actually put any real functionality
behind the controls. This chapter walks you through the creation of each of the summary con-
trols and finishes up by taking the screenshot for the main page of the site, which is still blank.
In this chapter, you will see how to expose custom types from the WCF RIA Services platform
even if they have not been generated with the LINQ to SQL code generator. You will also see
coverage of some important additions to Silverlight such as the new charting capabilities that
can be found in the Silverlight Toolkit.

Finally, because the title of this chapter is “Unfinished Business” you’ll be adding an impor-
tant line-of-business feature to the log pages — Printing. Since Silverlight’s first release, there’s
been no feature more requested than some kind of printing capability that doesn’t rely on the
default browser printing functionality. Now, with Silverlight 4 developers finally have an easy
interface to perform printing as part of the runtime. In this chapter, you’ll see how easy it is to
add this new printing functionality to the food, exercise, and measurement log pages in order
to allow users to print the data in the various DataGrid controls. Since you already have a
right-click context menu developed and attached to these DataGrid controls, it shouldn’t be
too difficult to add a print option as well.

8

534045c08.indd 313 3/13/10 4:50:41 PM

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

314 ❘ Chapter 8 Unfinished BUsiness

problem

Once users are logged into FitnessTrackerPlus, the first thing they see is the dashboard page. From
the dashboard page, users need access to site announcements and summary information of entries
that have been logged for the current day. Most sites offer some kind of dashboard functionality
that includes basic summary information along with chart controls to enhance the look and feel of
the page as well as quickly give users a visual overview of important data points. Earlier, you cre-
ated placeholder controls for the food, exercise, and MeasurementSummary controls. Now that all of
the log pages are fully functional, it is time to work out some of the details of the summary controls.

Each of the summary controls on the page should give the user quick insight into the current daily
progress being made in each of the three fitness areas. One of the best ways to achieve this is through
the use of charts. In previous versions of Silverlight, you would have had to resort to potentially
expensive third-party charting libraries and components. Now, with the latest release of the Silverlight
Toolkit you have access to a completely free and powerful charting solution. You should find a way
to incorporate some of the available charts into the nutrition and ExerciseSummary controls. As
far as the measurements summary control goes, the most useful information you can probably
provide would be the last recorded measurement values for the user along with the most up-to-date
image. Because you don’t have much room on this control, you can concentrate on displaying the last
recorded entries for the standard measurements that apply to all users. The challenge is that you will
have to come up with an appropriate LINQ query to retrieve the last recorded measurement for each
of the standard measurements. You also will have to accommodate the possibility that there is no
recorded value for certain measurements.

An additional problem that you need to resolve in this chapter is probably the easiest one you will
face depending on your ability to hit both the Alt and Print Screen keys at the same time. Even
the most artistically challenged developers should have no problem taking screenshots. All that is
required is entering some data on one of those log pages, and good old Microsoft Paint.

In Chapter 3, you created a placeholder for the screenshot, so that is where you place it once you
have one. Remember, this screenshot will be the first thing that users see when they arrive at the main
landing page. As unfair as it may sound, most Internet users will judge a book, or in this case a site, by
its cover, and if the screenshot does not provide a good representation of the site, the majority of them
will immediately leave and find your competitor. Anyone can take a screenshot, but you must make
sure it’s the right one. As mundane and unimportant as this task may seem, it is absolutely critical to
ensuring that your landing page looks professional and well thought out.

Finally, to ensure that the application has features similar to a traditional line-of-business applica-
tion, you also need to add printing support to all the DataGrid controls in the various log pages.
Users should be able to right-click any DataGrid and select a Print Entries option to get a printed
copy of their food, exercise, and measurement log entries.

Design

The “Design” section for this chapter is broken down into three main areas — one for each of the
summary controls that need to be created. Once again, I will be using the same design and solu-
tion formula, breaking down the components into separate discussions on user interface, database,

534045c08.indd 314 3/13/10 4:50:41 PM

Design ❘ 315

data access, business logic, and finally the user interface code behind logic. First up is the daily
FoodSummary control.

Food summary
Using the list of food log entries that have been created in the food log for the current day, the
FoodSummary control should show the user a quick visual overview of the major nutrients that have
been consumed. You can display many different things here. One of the most obvious choices would
be the total number of calories consumed so far. Along with the number of calories, you should
probably display some of the individual nutrient totals as well. Because you are attempting to create
a dashboard look and feel with each of these summary controls, you need to incorporate some kind
of chart control onto each of the summaries. Users will already be able to see the total number of
calories consumed for the given day, but they will probably wonder where all of those calories are
coming from. By providing a pie chart of the various calorie sources, users will have a good visual-
ization tool to see how many calories each food in their food log is contributing to the overall total
calorie count.

User Interface

When designing the user interface for the FoodSummary, you need to include both the text-based
list of nutrient totals and a chart that shows how the various food sources were added to the food
log so far along with the number of calories that each of those foods is responsible for. For this
control, you want to display the text-based values and the accompanying chart side by side with the
text values, taking up only as much space as is required and the pie chart using up the remainder of
the available space. As far as the text-based list, you should plan on displaying the data in a format
similar to Table 8-1:

table 8-1: Suggested Text-Based List Display

Data Value

Total Calories Consumed 1,200

Fat 30

Carbohydrates 100

Protein 40

Sugars 100

Cholesterol 230

For the pie chart, you will need the business logic layer to go through the complete list of food log
entries for the given day and return both the food that was logged and the percentage of total calo-
ries consumed represented by that food. Although the calculation is pretty simple, you should still
make sure that it is done in the business logic layer so that the user interface simply needs to make

534045c08.indd 315 3/13/10 4:50:41 PM

316 ❘ Chapter 8 Unfinished BUsiness

use of that data in order to draw the pie chart. As stated earlier, each slice of the pie chart will repre-
sent one of the foods entered in the food log and the size of the pie slices will depend on the percent-
age of the total calories consumed that the given food represents.

Database, Data Access

No additional work is needed for these two areas. All you will need to calculate the values is the
current list of food log entries, which is already available from the existing database tables and LINQ
to SQL classes.

Business Logic

For the business logic layer, you will need to modify the existing FoodService class in order to return
an object that the user interface can use to display both the nutrient values and calorie percentages for
the items in the food log. Everything that is needed for displaying both the text values and pie chart
should be encapsulated into a new business object that can be returned by the FoodService. Ideally,
the user interface should be able to call a new method called GetDailyFoodSummary, which returns a
DailyFoodSummary object that contains the total calories consumed, nutrient value totals, and a list
of each food along with the total percentage of calories consumed represented by that entry. Because
there is no DailySummary table in the database, this class won’t be something that is generated auto-
matically with the LINQ to SQL classes code generator. Instead, you will need to create a new entity
class and instruct the WCF RIA Services framework to make it available to the client. As you will see
in the “Solution” section, just because your DomainService extends the LinqToSqlDomainService
class does not mean that you are necessarily limited to using only those classes that are generated
using the existing LINQ to SQL code generation tools.

User Interface Code Behind

In the code behind for the FoodSummary, the only real operation that needs to take place is the
retrieval of the DailyFoodSummmary from the FoodService and the display of its information. The
first thought might be to just go ahead and place that logic in the Loaded event like you have been
doing for many of the other control initialization tasks. However, it is entirely possible and in fact
quite likely that the user will leave the dashboard, make new entries in the food log, and then return
to this dashboard page expecting to see updated information. Unfortunately, if you were to place
all of the logic in the Loaded event the user would still see old data because the Loaded event is trig-
gered only once during this sequence of events. Because this is not a problem that is unique to the
FoodSummary control, you will need to devise a solution that provides the parent dashboard page a
mechanism to trigger a data refresh in all three summary controls. Once again, this seems like a per-
fect opportunity to make use of interface-based programming because the dashboard page doesn’t
really need to know any details of the summary control it is trying to initiate the refresh on, just
that it is, in fact, a summary control. In the “Solution” section, you will build an ISummaryControl
interface with one method called RefreshSummary. Each of three summary controls will need to
implement this interface and refresh their data when the RefreshSummary method is called by the
dashboard page.

534045c08.indd 316 3/13/10 4:50:42 PM

Design ❘ 317

exercise summary
The ExerciseSummary control will be responsible for showing the user how many calories they have
burned for the current day. At this point, the users are aware of how many calories have been consumed
and the sources of those calories. The ExerciseSummary will quickly show the users if they are success-
fully burning all of those calories and it will also show them which exercises have been the most effec-
tive in burning those calories. Like the FoodSummary control, this control will show both a text-based
representation of the calorie data as well as a chart control to show which exercises were responsible for
burning the calories. For this control, however, instead of making use of a pie chart to provide a visual-
ization of the data, you will be using a horizontal bar chart.

User Interface

The user interface for the ExerciseSummary control will be very similar to the one designed for the
FoodSummary control. You should again count on placing some TextBlock controls side by side with
a Chart control. When implementing this type of layout, you will no doubt find that the Grid control
offers the most flexibility with regards to control layout. The Grid control also offers one of the
only ways to ensure that the list of TextBlock controls only takes up the actual space required while
at the same time ensuring that the Chart control takes up the remaining available space. The format
for the TextBlock control list will also mimic the work done for the FoodSummary control and will
need to display the total calories burned, along with the calories burned from cardio, weight train-
ing, and other activities. Table 8-2 gives an example of what the TextBlock controls should look
like when complete:

table 8-2: TextBlock Controls Example

Control Value

Total Calories Burned 1,200

Cardio 500

Weight Training 200

Other Activities 500

For the horizontal bar chart, you should expect to have a DailyExerciseSummary object available
from the ExerciseService that the user interface will make use of in order to create the chart. Each
bar on the chart should represent both the exercise that was performed as well as the total number of
calories burned.

Database, Data Access

There are no new database tables or LINQ to SQL classes needed to develop the ExerciseSummary
control. Just as you did with the FoodSummary, you will make use of the existing database tables and
generated LINQ to SQL classes that are available from the ExerciseService you created earlier.

534045c08.indd 317 3/13/10 4:50:42 PM

318 ❘ Chapter 8 Unfinished BUsiness

Business Logic

Just as you did for the FoodSummary control, you will need to make modifications to the ExerciseService
that includes adding both a method to return the summary information and a class to hold the various
summary data. In this case, you should create a method called GetDailyExerciseSummary that will
retrieve the current list of exercises that have been added to the exercise journal. Once the list of jour-
nal entries has been retrieved, the method needs to both calculate the total number of calories burned
as well as populate the DailyExerciseSummary object with a list of individual exercises along with
the number of calories burned for each exercise.

User Interface Code Behind

The ExerciseSummary control will implement the ISummaryControl interface and consequently
will perform most of its calculation logic in the RefreshSummary method. In this method, you will
first need to retrieve the summary data from the ExerciseService and then use that data to popu-
late both the TextBlock controls as well as the horizontal bar chart. You should be able to bind
the result of the retrieval method to the DataContext property of the control itself and use binding
expressions in the TextBlock controls in order to display the data.

measurement summary
The MeasurementSummary control will present users with a quick overview of their latest measure-
ments. This control will only be responsible for displaying a list of the standard measurements that
are available to all users along with the latest recorded value for those measurements. In addition to
the list of standard measurements, the last recorded user image will also be displayed. There won’t
be any charts on this control as the main purpose is just to provide a really quick summary of the
users’ most up-to-date measurements.

User Interface

The user interface for the MeasurementSummary control will consist of a list of TextBlock controls
with binding expressions set up in order to display the measurement values. Once again, this will
assume that a DailyMeasurementSummary object has been retrieved from the business logic layer and
its properties are available for data binding. As in the previous summary controls, the TextBlock
controls will only take up a portion of the overall user interface. Sitting alongside the TextBlock con-
trols will be the most recently updated image of the user. If the user has not uploaded any images,
then a default “Image not available” image will be displayed in its place. Because there will be no
additional chart controls, this is really going to be a pretty simple user interface.

Database, Data Access

There are no new database tables or LINQ to SQL classes needed to develop the MeasurementSummary
control. Just as you did with the previous summary controls, you will make use of the existing data-
base tables and generated LINQ to SQL classes that are available from the MeasurementService
you created earlier in the book.

534045c08.indd 318 3/13/10 4:50:42 PM

Solution ❘ 319

Business Logic

The business logic layer for the MeasurementSummary control follows in the footsteps of the
previous summary controls. Once again, you will need to create an additional business object
called DailyMeasurementSummary and you will also have to add a ServiceOperation to the
MeasurementService class that retrieves this daily summary. The hardest part of this is figuring
out the appropriate LINQ statements that are necessary to ensure that only the most recently logged
value is returned for each of the standard measurements. As you will see in the solution, the LINQ
syntax supports a wide range of options and if it has a statement for the traditional T-SQL, most
likely it has a related LINQ option that mimics that behavior.

User Interface Code Behind

The user interface code behind for the MeasurementSummary control should be pretty simple.
Just like the other summary controls, this one will also implement the ISummaryControl inter-
face and all of its logic will be performed in the RefreshSummary method. All you will need
to do here is call the GetDailyMeasurementSummary method of the MeasurementService and
bind the DailyMeasurementSummary object returned to the DataContext property of the overall
MeasurementSummary control. This ensures that all of the standard measurement TextBlock con-
trols display the correct information. Finally, you need to extract the latest image URL from the
DailyMeasurementSummary object and make sure that the Image control has its Source property
set accordingly. Don’t forget to include the additional code you saw in the previous chapter to
prevent Silverlight from caching the image as it is entirely possible that the user will upload a new
image in the measurement journal and then come back to this dashboard expecting to see the new
image; without that additional code, the user will only see the previously downloaded image.

printing support
The final area of concern in this chapter is going back and updating the right-click context menus
to include printing support for the various DataGrid controls. The “Solution” section shows you
that printing in Silverlight is pretty simple and does not require much code. Basically, the printing
programming interface allows you to send just about any UIElement or control declared in XAML
directly to the printer. As of now, there aren’t too many formatting options other than directly send-
ing the desired control to the printer, but you can do some basic things like stretching the content to
fit the available space on the paper. In this chapter, you’ll see how to specifically add printing sup-
port for the food log page. Because the printing requirement spans both the exercise and measure-
ment log pages, you can easily refer to the available sample code to see those implementations that
won’t really differ much from the food log page anyway.

solution

In the solution for this chapter, you’ll finish up the implementation of the three summary controls
for the dashboard page, and you’ll add printing support to the existing DataGrid controls. Also, you’ll
finally take that screenshot of the data entry process and place it on the main FitnessTrackerPlus

534045c08.indd 319 3/13/10 4:50:42 PM

320 ❘ Chapter 8 Unfinished BUsiness

starting page. You will need to have all of these details wrapped up before moving on to the next
major feature, which is the public journal. The solution includes details on how to work with
the Chart control of the Silverlight Toolkit, as well as how to expose custom entities from your
DomainService classes even if they were not generated using the LINQ to SQL code generator. When
working with the Chart control, you will see just how easy it is to customize the appearance of the
chart using a custom control template. In this case, you’ll create a control template that repositions
the Legend and Title areas to better fit the available screen area in the individual summary controls.

Food summary
The first control to work on is the FoodSummary control. The design of the control calls for some
TextBlock controls to display the consumed total calories as well as the totals for several important
nutrients. Finally, a pie chart will display and show all the individual food entries a user made along
with the various calorie counts associated with those foods. Each pie slice will represent a food item
added to the current food log; when the user hovers the mouse over a given pie slice, the total calo-
ries associated with that food will appear.

User Interface

To provide both the TextBlock fields as well as the pie chart in the space that is available for the sum-
mary control, you’ll need to have a container that hosts both those components and gives the appro-
priate amount of space to both visual elements. You could use a StackPanel with its Orientation
property set to Horizontal to align the TextBlock controls and pie chart so that they fill up the avail-
able space on the control. The downside is that you won’t have much control over how much space is
allocated to the pie chart versus the TextBlock controls. You would have to resort to a messy com-
bination of setting the Alignment and Margin properties on both elements to get the appearance
you’re looking for. Instead, you should use a Grid control, which splits the available area in such a
way that the column containing the TextBlock controls uses only the required amount of space to
properly display itself; and the column containing the Chart control takes up all of the remaining
space that is available in the summary control. The Grid control can really come in handy when you
need a combination of fixed-width columns and columns that need to take up the remaining avail-
able space. The following XAML code shows the FoodSummary control container that will hold the
TextBlock and Chart controls.

<Border Style=”{StaticResource SummaryBorderStyle}”>
 <StackPanel Style=”{StaticResource SummaryStackPanelStyle}”>
 <Border Style=”{StaticResource SummaryHeaderBorderStyle}”>
 <TextBlock Style=”{StaticResource FoodSummaryHeaderTextStyle}” />
 </Border>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition Width=”*” />
 </Grid.ColumnDefinitions>
 <StackPanel Grid.Column=”0” Style=”{StaticResource

534045c08.indd 320 3/13/10 4:50:42 PM

Solution ❘ 321

SummaryTextStackPanelStyle}”>
 <!-- TextBlock controls will be hosted here -->
 </StackPanel>
 </Grid>
 <!-- Chart control will go here and be assigned to Grid.Column=”1” -->
 </StackPanel>
</Border>

Code snippet FoodSummary.xaml

As you can see, this container structure does a nice job of allocating the appropriate space for both
the TextBlock and Chart controls, so you can probably count on using the same technique when
you start working on the ExerciseSummary control as well.

Next, you should take a crack at the fixed TextBlock controls. One nice thing about Silverlight data
binding is that you can easily set the DataContext property of the overall user control and the data will
be fully available to any of the child controls being hosted that wish to make use of it. This makes
it easy to set up the Binding property of the various TextBlock controls to values that are available
from the DataContext property of the parent UserControl. In the following code, each TextBlock
control is bound to the appropriate DailyFoodSummary property and a Converter formats the string
being displayed.

<Style x:Key=”IndentedSummaryTextStyle” BasedOn=”{StaticResource
SummaryTextStyle}” TargetType=”TextBlock”>
 <Setter Property=”TextAlignment” Value=”Right” />
 <Setter Property=”FontWeight” Value=”Normal” />
</Style>

<StackPanel Grid.Column=”0” Style=”{StaticResource SummaryTextStackPanelStyle}”>
 <TextBlock Text=”{Binding Path=total_calories, Converter={StaticResource
SummaryConverter}, ConverterParameter=’Total Calories Consumed: {0}’}”
Style=”{StaticResource SummaryTextStyle}” />
 <TextBlock Text=”{Binding Path=total_fat, Converter={StaticResource
SummaryConverter}, ConverterParameter=’Fat: {0}g’}” Style=”{StaticResource
IndentedSummaryTextStyle}” />
 <TextBlock Text=”{Binding Path=total_carbohydrate, Converter={StaticResource
SummaryConverter}, ConverterParameter=’Carbohydrate: {0}g’}” Style=”{StaticResource
IndentedSummaryTextStyle}” />
 <TextBlock Text=”{Binding Path=total_protein, Converter={StaticResource
SummaryConverter}, ConverterParameter=’Protein: {0}g’}” Style=”{StaticResource
IndentedSummaryTextStyle}” />
</StackPanel>

Code snippet FoodSummary.xaml

All the TextBlock controls make use of the existing SummaryConverter class that you created
previously, which handles converting the raw data value into the formatted string assigned to the
ConverterParameter attribute. With the TextBlock controls complete, it’s time to dig into the
charting component that you’ll make use of on both the food and ExerciseSummary controls. Before
getting into the details of the FoodSummary pie chart, it’s best to take a quick detour to introduce

534045c08.indd 321 3/13/10 4:50:43 PM

322 ❘ Chapter 8 Unfinished BUsiness

you to the charting component of the Silverlight Toolkit as well as to give you a simple example of
how to get working with the Chart control quickly.

Charting with the Silverlight Toolkit

With each revision of the Silverlight Toolkit, many enhancements are made to the available charting
feature. It is now really at a point where it successfully blends ease of use with powerful visualiza-
tion capabilities to form a great and, most important, free charting solution for your application.
Once you see how little code it takes to get some charts up and running, I’m sure you’ll agree that
this sure beats using some of the extremely complex charting solutions available that various third-
party control vendors have offered in the past.

To get started with the charting features of the toolkit, first you need to add a reference to the
System.Windows.Controls.DataVisualization library in the Silverlight project. Creating charts
with this toolkit typically involves making use of the included Chart control and a corresponding
Series object. The only exception to this is the new TreeMap chart. The Series object determines
not only the type of chart but also the actual data values that are plotted in the chart. Several differ-
ent chart types are currently available from the toolkit. Table 8-3 shows all the available chart types
along with their associated series and image.

table 8-3: Available Chart Types in Silverlight Toolkit

Chart type series objeCt sCreenshot

Area AreaSeries

Column ColumnSeries

534045c08.indd 322 3/13/10 4:50:45 PM

Solution ❘ 323

Chart type series objeCt sCreenshot

Pie PieSeries

Bar BarSeries

Line LineSeries

Scatter ScatterSeries

table 8-3: Available Chart Types in Silverlight Toolkit (continued)

continues

534045c08.indd 323 3/13/10 4:50:45 PM

324 ❘ Chapter 8 Unfinished BUsiness

Chart type series objeCt sCreenshot

Bubble BubbleSeries

TreeMap N/A

Creating a chart is pretty simple.

 1. Add the following namespace declaration:

xmlns:charting=”clr-
namespace:System.Windows.Controls.DataVisualization.Charting;
assembly=System.Windows.Controls.DataVisualization.Toolkit”

Code snippet MainPage.xaml

 2. Drop a Chart control into your XAML code. Along with the Chart control, you most likely
will need a Series object declared in the XAML for the Chart. For this example, create a
quick pie chart. Here is the XAML code declaration for the Chart control and associated
PieSeries:

<charting:Chart x:Name=”PieChart” Title=”Pie Chart” Width=”350”>
 <charting:Chart.Series>
 <charting:PieSeries ItemsSource=”{Binding}” />
 </charting:Chart.Series>
</charting:Chart>

Code snippet MainPage.xaml located in ChartSample project

 3. You can set the data points for your new chart in many different ways, but for this example
you’ll use a List<KeyValuePair> collection. In the code behind, you could have the calorie
values of a couple of foods represented as KeyValuePair objects.

List<KeyValuePair<string, int>> items = new
List<KeyValuePair<string, int>>();

items.Add(new KeyValuePair<string, int>(“Banana”, 180));
items.Add(new KeyValuePair<string, int>(“Ice Cream”, 400));

table 8-3: Available Chart Types in Silverlight Toolkit (continued)

534045c08.indd 324 3/13/10 4:50:46 PM

Solution ❘ 325

items.Add(new KeyValuePair<string, int>(“Yogurt”, 90));
items.Add(new KeyValuePair<string, int>(“Chicken”, 200));

Code snippet MainPage.xaml.cs located in ChartSample project

 4. In order for the Chart control to actually draw the pie chart, you would simply set the
DataContext property of the Chart control as such:

PieChart.DataContext = items;

Code snippet MainPage.xaml.cs

 5. The last thing required for the pie chart to work is to tell the series which piece of the
KeyValuePair object will represent the actual data value of the pie slice, and which piece
will represent the item being measured. For all Series objects, this is done by setting the
IndependentValuePath and DependentValuePath properties, which you can safely define
in the following way.

The ➤➤ IndependentValuePath represents the item you are measuring. In the current
example, this is the food name itself.

The ➤➤ DependentValuePath is typically the property of the bound object that
represents the data points being tracked. Again, using the current example, the
DependentValuePath is the actual calorie values for each of the foods.

More often than not, if you bind to the ➤➤ Chart control using a collection of
KeyValuePair objects, you’ll almost always set the IndependentValuePath to the
Key property and the DependentValuePath to the Value property.

Here is the XAML code for this example’s pie chart with the IndependentValuePath and
DependentValuePath set to the Key and Value properties, respectively.

<charting:Chart x:Name=”PieChart” Title=”Pie Chart” Width=”350”>
 <charting:Chart.Series>
 <charting:PieSeries ItemsSource=”{Binding}”
 DependentValuePath=”Value”
 IndependentValuePath=”Key” />
 </charting:Chart.Series>
</charting:Chart>

Code snippet MainPage.xaml located in ChartSample project

 6. After you complete all this, running this simple example
results in the pie chart shown in Figure 8-1.

Figure 8-1

534045c08.indd 325 3/13/10 4:50:46 PM

326 ❘ Chapter 8 Unfinished BUsiness

Just in case the business requirements change and you are
given the directive to display a bar chart instead of the pie
chart, you can easily make use of the same data, and by just
changing the Series object, you can generate a bar chart
like the one shown in Figure 8-2. Here is the XAML code
required to make the change.

<charting:Chart x:Name=”BarChart” Title=”Bar Chart” Width=”350”>
 <charting:Chart.Series>
 <charting:BarSeries ItemsSource=”{Binding}”
 DependentValuePath=”Value”
 IndependentValuePath=”Key” />
 </charting:Chart.Series>
</charting:Chart>

Code snippet MainPage.xaml located in ChartSample project

User Interface Continued

After that quick detour, it’s time to get back to the user interface for the FoodSummary control. Now
that you have seen how easy it is to add charting capabilities to your Silverlight application using
the charting component of the toolkit, you’ll add a chart to the FoodSummary to display the percent-
age of calories consumed from fat, carbohydrates, and protein. You have only a limited amount of
screen real estate in the summary controls and, as you saw in the previous sample, the Chart con-
trol, by default, includes space for the Title and Legend as well as the plot area itself. It would be
nice if you could remove the Title area completely from the Chart control because it really isn’t
needed on the summary control. You really just want to show the pie chart along with the Legend
area. To truly make efficient use of the available space, you may even want to move the Legend area
from alongside the plot area to below the actual chart drawing. In order to make this happen, you’ll
basically need to override the default control template of the Chart control.

You can do this a couple of different ways:

Open the ➤➤ Chart control in Expression Blend and edit a copy of the control template.

Because it’s not assumed that you have Blend available and that you’ve tried to stick to raw ➤➤

XAML editing in Visual Studio, an alternative and free method involves modifying the con-
trol template.

There really is nothing about the Blend solution that you can’t do yourself, so open up a new
Explorer window and navigate to the installation location of the toolkit; most likely this is C:\
Program Files\Microsoft SDKs\Silverlight\v4.0\Toolkit\Nov09. Then go to the Source
directory and unzip the Source code.zip file. After the file extraction is complete, you should have a
Source code folder available. Now navigate to the Controls.DataVisualization.Toolkit\Themes

Figure 8-2

534045c08.indd 326 3/13/10 4:50:46 PM

Solution ❘ 327

directory. In this folder you will find the generic.xaml file containing the default control template
for the Chart control. Because you have a ton of XAML code in this file, you may have to search for
it, but eventually you will find the default template for the Chart. Once you find it, you only need
the XAML code for the Template property and it looks like this:

<Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”charting:Chart”>
 <Border Background=”{TemplateBinding Background}”
BorderBrush=”{TemplateBinding BorderBrush}” BorderThickness=”{TemplateBinding
BorderThickness}” Padding=”10”>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”*” />
 </Grid.RowDefinitions>

 <datavis:Title Content=”{TemplateBinding Title}”
Style=”{TemplateBinding TitleStyle}” />

 <!-- Use a nested Grid to avoid possible clipping behavior
resulting from ColumnSpan+Width=Auto -->
 <Grid Grid.Row=”1” Margin=”0,15,0,15”>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*” />
 <ColumnDefinition Width=”Auto” />
 </Grid.ColumnDefinitions>

 <datavis:Legend x:Name=”Legend”
Title=”{TemplateBinding LegendTitle}” Style=”{TemplateBinding LegendStyle}”
Grid.Column=”1” />
 <chartingprimitives:EdgePanel x:Name=”ChartArea”
Style=”{TemplateBinding ChartAreaStyle}”>
 <Grid Canvas.ZIndex=”-1” Style=”{TemplateBinding
PlotAreaStyle}” />
 <Border Canvas.ZIndex=”10”
BorderBrush=”#FF919191”BorderThickness=”1” />
 </chartingprimitives:EdgePanel>
 </Grid>
 </Grid>
 </Border>
 </ControlTemplate>
 </Setter.Value>
</Setter>

As you can see from the previous code, there isn’t too much involved in the creation of the Chart con-
trol. The current goal is to redisplay the Legend below the actual chart. The chart itself is contained in
the Grid with the custom style called PlotAreaStyle. In turn, this plot area and the Legend are con-
tained in a Grid control that assigns the PlotAreaStyle to the left and the Legend to the right. To
get the effect you are looking for, you just need to alter the Grid control container and change it so
that you have three rows. The first row will contain the Title, the second row the PlotAreaStyle,

534045c08.indd 327 3/13/10 4:50:47 PM

328 ❘ Chapter 8 Unfinished BUsiness

and the third row the Legend. The following XAML code shows the custom Chart template that
you will use for both the FoodSummary control and the ExerciseSummary control charts.

xmlns:charting_visuals=”clr-
namespace:System.Windows.Controls.DataVisualization;
assembly=System.Windows.Controls.DataVisualization.Toolkit”

xmlns:charting_primitives=”clr-
namespace:System.Windows.Controls.DataVisualization.Charting.Primitives;
assembly=System.Windows.Controls.DataVisualization.Toolkit”

<Style x:Key=”FoodSummaryChartStyle” TargetType=”charting:Chart”>
 <Setter Property=”BorderThickness” Value=”0” />
 <Setter Property=”Width” Value=”150” />
 <Setter Property=”VerticalAlignment” Value=”Top” />
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”charting:Chart”>
 <Border Background=”{TemplateBinding Background}”
BorderBrush=”{TemplateBinding BorderBrush}” BorderThickness=”{TemplateBinding
BorderThickness}” Padding=”10”>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”*” />
 <RowDefinition Height=”Auto” />
 </Grid.RowDefinitions>
 <charting_primitives:EdgePanel x:Name=”ChartArea”
Style=”{TemplateBinding ChartAreaStyle}”>
 <Grid Style=”{TemplateBinding PlotAreaStyle}” />
 </charting_primitives:EdgePanel>
 <charting_visuals:Legend x:Name=”Legend”
Title=”{TemplateBinding LegendTitle}” Style=”{StaticResource
SummaryChartLegendStyle}” Margin=”0,5,0,0” Grid.Row=”2” />
 </Grid>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Code snippet FoodSummary.xaml

With the custom template for the chart control and the TextBlock controls defined, you are pretty
much done with the user interface.

Database, Data Access

As stated in the design, no further work is necessary for the database and data access layers.
Instead, you simply will be making modifications to the existing FoodService and the LINQ
to SQL entities you created previously.

534045c08.indd 328 3/13/10 4:50:47 PM

Solution ❘ 329

Business Logic

For the FoodSummary control, the discussion of the business logic layer starts with the existing
FoodService that was created earlier. You will need to make several modifications to the service in
order to give the user interface the necessary data. The user interface requires a new custom business
object that contains the total calories consumed along with several nutrient totals. In this summary
object, it would also be nice to include the list of foods and associated calorie counts from the pie
chart but, unfortunately, WCF .NET RIA Services do not support the return of embedded complex
type lists. Therefore, you need to incorporate an additional step to get all of this working.

Follow these steps:

 1. Create the required DailyFoodSummary class that will hold the total calories consumed as
well as the nutrient totals.

 2. Because there isn’t any direct correlation to any database tables, you can’t make use of LINQ
to SQL. Because this class still needs to be exposed by the WCF RIA Services engine, you
must add the [EnableClientAccess] attribute above the class definition. The following
code shows the DailyFoodSummary class, which you simply add below the FoodService
class definition.

[EnableClientAccess()]
public class DailyFoodSummary
{
 public DailyFoodSummary() { }

 [Key]
 public DateTime entry_date { get; set; }

 public double? total_calories { get; set; }
 public double? total_carbohydrate { get; set; }
 public double? total_fat { get; set; }
 public double? total_protein { get; set; }
}

Code snippet FoodService.cs

 3. The [EnableClientAccess] attribute is not the only requirement for exposing custom classes
to the client using WCF RIA Services. In order for the WCF RIA Services framework to expose
an entity or a custom business object, you are required to designate at least one property with
the [Key] attribute. This designation tells the framework that the property can be considered
unique for each instance of the object. In this case, each DailyFoodSummary object will have a
unique entry_date property, so that will make a good candidate for the key. All you have to
do is add the [Key] attribute directly above the property declaration and you are good to go.

 4. Once you have created the DailyFoodSummary class, you can then create a new service oper-
ation that will populate and return a new DailyFoodSummary object to the user interface.
You will want to create a new method in the FoodService called GetDailyFoodSummary.

534045c08.indd 329 3/13/10 4:50:47 PM

330 ❘ Chapter 8 Unfinished BUsiness

The GetDailyFoodSummary method collects all the existing food log entries and
makes use of the Sum method of LINQ to calculate the total number of calories
consumed for the given day.

 5. Additionally, you will tally nutrient totals for protein, carbohydrates, and fat using
the same LINQ Sum operation. The following code shows the implementation of the
GetDailyFoodSummary method.

public DailyFoodSummary GetDailyFoodSummary(int user_id, DateTime entry_date)
{
 List<FoodLogEntry> entries = GetFoodLogEntries(user_id, entry_date,
false).ToList();
 DailyFoodSummary summary = new DailyFoodSummary
 {
 total_calories = 0,
 total_carbohydrate = 0,
 total_fat = 0,
 total_protein = 0
 };

 if (entries.Count() > 0)
 {
 summary.total_calories = entries.Sum(e => e.Food.calories);
 summary.total_carbohydrate = entries.Sum(e => e.Food.carbohydrate);
 summary.total_fat = entries.Sum(e => e.Food.fat);
 summary.total_protein = entries.Sum(e => e.Food.protein);
 }

 summary.entry_date = entry_date;
 return summary;
}

Code snippet FoodService.cs

 6. As I said earlier, in a perfect world and most likely in a future release of WCF RIA Services,
you would be able to include a list of FoodSummaryData objects in the DailyFoodSummary so
that the user interface has only one method to call. However, because the current version of
WCF RIA Services does not support embedding List<T> objects of complex types you need
to add an additional method. Before doing that, you need to create the FoodSummaryData
class. In theory, you could just return the FoodLogEntry objects themselves but there is a lot
of additional information that would be passed over the wire related to food log entries that
you really don’t need here. The following code shows the FoodSummaryData class and its two
properties. Again, in order for the WCF RIA Services to be able to work with this, you need
both the [EnableClientAccess()] and [Key] attributes.

[EnableClientAccess()]
public class FoodSummaryData
{
 [Key]

534045c08.indd 330 3/13/10 4:50:47 PM

Solution ❘ 331

 public string food_name { get; set; }
 public double calories { get; set; }
}

Code snippet FoodService.cs

 7. Finally, you need to add the method that will return a list of FoodSummaryData objects
to the user interface. Because this is a list, you can just create a method that follows
the Query naming convention in order for the WCF RIA Services runtime to expose it.
The following code shows the GetDailyFoodSummaryData method, which returns an
IEnumerable<FoodSummaryData>.

public IEnumerable<FoodSummaryData> GetDailyFoodSummaryData(int user_id,
DateTime entry_date)
{
 List<FoodLogEntry> entries = GetFoodLogEntries(user_id, entry_date,
true).ToList();
 List<FoodSummaryData> foods = new List<FoodSummaryData>();

 foreach (FoodLogEntry entry in entries)
 foods.Add(new FoodSummaryData { food_name = entry.Food.food_name,
calories = entry.ServingSize.calories.Value });

 return foods;
}

Code snippet FoodService.cs

As you can see, there isn’t much to this method other than creating the list of FoodSummaryData
objects using the food name and calorie values of each FoodLogEntry retrieved for the current user.
Now the user interface will be able to make use of this list in order to successfully create the pie
chart.

User Interface Code Behind

As discussed in the “Design” section, even though you don’t have a lot of work to do in the code
behind, you can’t just place it all in the Loaded event handler because it is possible that the data will
need to be refreshed. Instead, the FoodSummary class will be implementing the IDailySummary inter-
face as shown in Listing 8-1.

listing 8-1: IDailySummary.cs

using System;

public interface IDailySummary
{
 void LoadSummary(int user_id, DateTime summary_date);
}

534045c08.indd 331 3/13/10 4:50:47 PM

332 ❘ Chapter 8 Unfinished BUsiness

By implementing the interface, you really only have to worry about adding the LoadSummary
method. Now, because of the limitations discussed earlier regarding complex types and the current
version of WCF RIA Services, you will need to perform two steps. In Listing 8-2, you will see that
after retrieving the DailyFoodSummary object, you will then need to call the Load method of the
DomainContext using the GetDailyFoodSummaryDataQuery.

listing 8-2: FoodSummary.xaml.cs

using System;
using System.Collections;
using System.Collections.Generic;
using System.Windows.Controls;
using FitnessTrackerPlus.Web.Services;
using System.Windows.Ria;

namespace FitnessTrackerPlus.Views.Dashboard
{
 public partial class FoodSummary : UserControl, IDailySummary
 {
 public FoodContext context = new FoodContext();

 public FoodSummary()
 {
 InitializeComponent();
 }

#region IDailySummary Members

 public void LoadSummary(int user_id, DateTime summary_date)
 {
 context.Load<DailyFoodSummary>(context.
GetDailyFoodSummaryQuery(user_id, summary_date),
 (SummaryLoaded) =>
 {
 if (!SummaryLoaded.HasError)
 {
 IEnumerator<DailyFoodSummary> enumerator =
SummaryLoaded.Entities.GetEnumerator();
 enumerator.MoveNext();

 this.DataContext = enumerator.Current;

 // Load the food summary data for the pie chart

 context.Load<FoodSummaryData>(context.
GetDailyFoodSummaryDataQuery(Globals.CurrentUser.id, Globals.SelectedDate),
LoadBehavior.RefreshCurrent, (FoodSummaryLoaded) =>
{
 if (!FoodSummaryLoaded.HasError)
 {

534045c08.indd 332 3/13/10 4:50:48 PM

Solution ❘ 333

 // Create a new KeyValuePair list with the data for the Pie chart

 List<KeyValuePair<string, double?>> data = new
List<KeyValuePair<string, double?>>();

 foreach (FoodSummaryData food in FoodSummaryLoaded.Entities)
 data.Add(new KeyValuePair<string, double?>(food.food_name,
food.calories));

 FoodSummaryChart.DataContext = data;
 }

}, null);
 }

 }, null);
 }

#endregion
 }
}

As you can see in Listing 8-2, creating the pie chart is as simple as creating a list of KeyValuePair
objects where the Key is equal to the food name and the Value is equal to the actual number of calo-
ries associated with that food. Finally, you just set the
DataContext property of the Chart control and the
Silverlight Toolkit does the rest.

This pretty much finishes up the FoodSummary control.
If you were to now add entries to the food log and come
back to the dashboard page you would be presented with
a FoodSummary that looks like Figure 8-3.

exercise summary
The ExerciseSummary control is very similar to the FoodSummary in that you are both showing a
text-based representation of data along with a chart. It’s a little bit simpler, however, in that you
only need to display the total calories burned for the current day and a chart that shows how those
calories were burned. Although another pie chart could be used here, you’ll instead use a column
chart just to mix up the visualizations available to the user.

User Interface

The user interface for the ExerciseSummary is very similar to the FoodSummary in that you use a
Grid control as the container for both the TextBlock control and accompanying Chart. As you can
see in Listing 8-3, the only major differences are that when you declare the Chart you make use of
the ColumnSeries instead of the PieSeries, and the custom Chart template consists of only the
PlotAreaStyle, with no Title or Legend.

Figure 8-3

534045c08.indd 333 3/13/10 4:50:48 PM

334 ❘ Chapter 8 Unfinished BUsiness

listing 8-3: ExerciseSummary.xaml

<UserControl x:Class=”FitnessTrackerPlus.Views.Dashboard.ExerciseSummary”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:converters=”clr-namespace:FitnessTrackerPlus.Converters”
 xmlns:charting=”clr-
namespace:System.Windows.Controls.DataVisualization.Charting;
assembly=System.Windows.Controls.DataVisualization.Toolkit”
 xmlns:charting_visuals=”clr-
namespace:System.Windows.Controls.DataVisualization;
assembly=System.Windows.Controls.DataVisualization.Toolkit”
 xmlns:charting_primitives=”clr-
namespace:System.Windows.Controls.DataVisualization.Charting.Primitives;
assembly=System.Windows.Controls.DataVisualization.Toolkit”>
 <UserControl.Resources>
 <converters:StringFormatConverter x:Key=”SummaryConverter” />
 <Style x:Key=”ExerciseSummaryHeaderTextStyle”
BasedOn=”{StaticResource SummaryHeaderTextStyle}” TargetType=”TextBlock”>
 <Setter Property=”Text” Value=”Exercise Summary” />
 </Style>
 <Style x:Key=”ExerciseSummaryChartStyle”
TargetType=”charting:Chart”>
 <Setter Property=”BorderThickness” Value=”0” />
 <Setter Property=”Width” Value=”250” />
 <Setter Property=”VerticalAlignment” Value=”Top” />
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”charting:Chart”>
 <Border Background=”{TemplateBinding
Background}” BorderBrush=”{TemplateBinding BorderBrush}”
BorderThickness=”{TemplateBinding BorderThickness}” Padding=”10”>
 <Grid>
 <charting_primitives:EdgePanel
x:Name=”ChartArea” Style=”{TemplateBinding ChartAreaStyle}”>
 <Grid Style=”{TemplateBinding
PlotAreaStyle}” />
 </charting_primitives:EdgePanel>
 </Grid>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </UserControl.Resources>
 <Border Style=”{StaticResource SummaryBorderStyle}”>
 <StackPanel Style=”{StaticResource SummaryStackPanelStyle}”>
 <Border Style=”{StaticResource SummaryHeaderBorderStyle}”>
 <TextBlock Style=”{StaticResource
ExerciseSummaryHeaderTextStyle}” />
 </Border>

534045c08.indd 334 3/13/10 4:50:48 PM

Solution ❘ 335

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”*” />
 </Grid.RowDefinitions>
 <StackPanel Grid.Row=”0” Style=”{StaticResource
SummaryTextStackPanelStyle}”>
 <TextBlock Text=”{Binding Path=total_calories,
Converter={StaticResource SummaryConverter}, ConverterParameter=’Total
Calories Burned: {0}’}” Style=”{StaticResource SummaryTextStyle}” />
 </StackPanel>
 <charting:Chart x:Name=”ExerciseSummaryChart” Grid.Row=”1”
Style=”{StaticResource ExerciseSummaryChartStyle}”>
 <charting:Chart.Series>
 <charting:BarSeries ItemsSource=”{Binding}”
DependentValuePath=”Value”
IndependentValuePath=”Key” />
 </charting:Chart.Series>
 </charting:Chart>
 </Grid>
 </StackPanel>
 </Border>
</UserControl>

Database, Data Access

Once again, no work is necessary in the database or data access layers.

Business Logic

The business logic for the ExerciseSummary control will follow the same basic technique used
for the FoodSummary control. Here you modify the existing ExerciseService, adding both a
DailyExerciseSummary class and a GetDailyExerciseSummary method that has been marked with
the [Invoke] attribute. The following code shows both the DailyExerciseSummary class along
with the implementation behind the required GetDailyExerciseSummary method.

[EnableClientAccess()]
public class DailyExerciseSummary
{
 public DailyExerciseSummary() {}

 [Key]
 public DateTime entry_date { get; set; }

 public double? total_calories { get; set; }
 public double? calories_from_cardio { get; set; }
 public double? calories_from_weight_training { get; set; }
 public double? calories_from_activities { get; set; }
}

public DailyExerciseSummary GetDailyExerciseSummary(int user_id,
DateTime entry_date)
{

534045c08.indd 335 3/13/10 4:50:48 PM

336 ❘ Chapter 8 Unfinished BUsiness

 List<ExerciseLogEntry> entries = GetExerciseLogEntries(entry_date,
user_id).ToList();
 DailyExerciseSummary summary = new DailyExerciseSummary
 {
 total_calories = 0,
 calories_from_cardio = 0,
 calories_from_activities = 0,
 calories_from_weight_training = 0
 };

 if (entries.Count() > 0)
 {
 summary.total_calories = entries.Sum(e => e.calories);

 if (summary.total_calories > 0)
 {
 summary.calories_from_cardio += entries.Where(e =>
e.Exercise.ExerciseType.type_name == “Cardio”).Sum(e => e.calories);
 summary.calories_from_weight_training += entries.Where(e =>
e.Exercise.ExerciseType.type_name == “Weight Training”).Sum(e => e.calories);
 summary.calories_from_activities += entries.Where(e =>
e.Exercise.ExerciseType.type_name == “Activities”).Sum(e => e.calories);
 }
 }

 summary.entry_date = entry_date;
 return summary;
}

Code snippet ExerciseService.cs

As you can see, there isn’t much to the implementation other than getting the sum of the total calo-
ries burned from all of the exercise log entries. In addition, you are also totaling up all of the calories
burned based on the type of exercise that was entered in the log. The user interface will use this to
create the column chart and each exercise type will be represented by its own column.

User Interface Code Behind

The ExerciseSummary control also implements the IDailySummary interface and that is where
you will be placing all of the code. The ExerciseSummary doesn’t require the extra workaround
step that the FoodSummary control needed, so the implementation shown here in Listing 8-4 for the
LoadSummary method uses less code.

listing 8-4: ExerciseSummary.xaml.cs

using System;
using System.Collections;
using System.Collections.Generic;
using System.Windows.Controls;

534045c08.indd 336 3/13/10 4:50:48 PM

Solution ❘ 337

using System.Windows.Controls.DataVisualization.Charting;
using FitnessTrackerPlus.Web.Services;

namespace FitnessTrackerPlus.Views.Dashboard
{
 public partial class ExerciseSummary : UserControl, IDailySummary
 {
 private ExerciseContext context = new ExerciseContext();

 public ExerciseSummary()
 {
 InitializeComponent();
 }

#region IDailySummary Members

 public void LoadSummary(int user_id, DateTime summary_date)
 {
 context.Load<DailyExerciseSummary>(context.
GetDailyExerciseSummaryQuery(user_id, summary_date),
 (SummaryLoaded) =>
 {
 if (!SummaryLoaded.HasError)
 {
 IEnumerator<DailyExerciseSummary> enumerator =
SummaryLoaded.Entities.GetEnumerator();
 enumerator.MoveNext();

 this.DataContext = enumerator.Current;

 // Create a new KeyValuePair list with the
 // data for the Pie chart

 List<KeyValuePair<string, double?>> data = new
List<KeyValuePair<string, double?>>();

 data.Add(new KeyValuePair<string, double?>(“Cardio”,
enumerator.Current.calories_from_cardio));
 data.Add(new KeyValuePair<string, double?>(“Weight
Training”, enumerator.Current.calories_from_weight_training));
 data.Add(new KeyValuePair<string, double?>(“Activities”,
enumerator.Current.calories_from_activities));

 ExerciseSummaryChart.DataContext = data;
 }

 }, null);
 }

#endregion
 }
}

534045c08.indd 337 3/13/10 4:50:48 PM

338 ❘ Chapter 8 Unfinished BUsiness

Once you are complete with the code behind page you
can run the application at this point and add some
entries to the current exercise log. Once completed, if
you navigate back to the dashboard page, you should see
an ExerciseSummary similar to the one in Figure 8-4.

measurement summary
The MeasurementSummary is intended to give users a quick insight into how they are progressing
toward their fitness goals. The design calls for the display of the most recently logged values for
all of the standard measurements as well as the most up-to-date image that has been uploaded to
the site if one has been made available. Many of the same techniques that were used for the food
and ExerciseSummary controls will be used here as well with the exception of the Chart control.
Because you only really have room for the text-based measurement values and the accompanying
image, you won’t be able to add any kind of Chart control to the user interface for this control.

User Interface

Just as you did with the previous summary controls, you need to make use of the Grid control
to provide a container for the text-based values as well as the Image control that will make up
the MeasurementSummary. I’ve already covered that code in the previous summary controls, so I
won’t be duplicating that here. Because the design calls for a text-based representation of the stan-
dard measurement values, you need to make a decision between declaring XAML for a bunch of
TextBlock controls or coming up with an alternate solution. I’m not a big fan of writing tons of
TextBlock XAML code in this situation, however, because you can easily achieve the same thing
with a simple customized ListBox control. This results in much less XAML code and a cleaner
look. You have already seen the creation of a custom ListBox in the previous dashboard chapter
when you created the site announcements feature. In that instance, you added HyperlinkButton
controls to the ItemContainerStyle. This time you will simply create an ItemContainerStyle
that incorporates a single TextBlock control. The following code shows the declaration of the
custom ListBox that will hold the standard measurements.

<Style x:Key=”MeasurementListStyle” TargetType=”ListBox”>
 <Setter Property=”BorderThickness” Value=”0” />
 <Setter Property=”Background” Value=”Transparent” />
 <Setter Property=”Margin” Value=”10,10,0,0” />
 <Setter Property=”MinHeight” Value=”150” />
 <Setter Property=”ScrollViewer.HorizontalScrollBarVisibility”
Value=”Hidden” />
</Style>
<Style x:Key=”MeasurementListItemStyle” TargetType=”TextBlock”>
 <Setter Property=”Margin” Value=”0,5,0,0” />
</Style>

<ListBox x:Name=”MeasurementList” Grid.Column=”0” Style=”{StaticResource
MeasurementListStyle}” ItemsSource=”{Binding Path=values}”>
 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <StackPanel />

Figure 8-4

534045c08.indd 338 3/13/10 4:50:49 PM

Solution ❘ 339

 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
 <ListBox.ItemContainerStyle>
 <Style TargetType=”ListBoxItem”>
 <Setter Property=”Template”>
 <Setter.Value>
 <ControlTemplate TargetType=”ListBoxItem”>
 <TextBlock Text=”{Binding Path=.}”
Style=”{StaticResource MeasurementListItemStyle}” />
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </ListBox.ItemContainerStyle>
</ListBox>

Code snippet MeasurementSummary.xaml

The custom ListBox takes care of displaying all of the standard measurement values. In case you
are wondering how the ListBox will actually display the standard measurements, notice how the
ItemsSource property of the ListBox is set to values. Just as you did for the previous summary
controls, you’ll create a custom business object to hold the measurement values along with the URL
to the most recently uploaded image called DailyMeasurementSummary. In this object, you’ll have
a list of string values that will contain a formatted string containing the measurement name and
the current value. The only thing left for the user interface is the Image control that will display the
most recently uploaded image of the user. The XAML code required for this is also pretty simple
and only requires a StackPanel along with the Border, Image, and a TextBlock, as shown in the
following code. As far as the Source property of the Image control, that will be taken care of soon
enough in the code behind. With this XAML completed, you are pretty much finished with the user
interface.

<Style x:Key=”MeasurementSummaryStackPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Margin” Value=”0,0,10,5” />
</Style>
<Style x:Key=”MeasurementSummaryImageBorderStyle” TargetType=”Border”>
 <Setter Property=”BorderBrush” Value=”#FF000000” />
 <Setter Property=”Background” Value=”#FFFFFFFF” />
 <Setter Property=”BorderThickness” Value=”1” />
 <Setter Property=”Width” Value=”175” />
 <Setter Property=”Height” Value=”200” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
</Style>
<Style x:Key=”MeasurementSummaryImageStyle” TargetType=”Image”>
 <Setter Property=”Stretch” Value=”Fill” />
</Style>
<Style x:Key=”MeasurementSummaryImageTextStyle” TargetType=”TextBlock”>
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”HorizontalAlignment” Value=”Center” />
</Style>

<StackPanel Grid.Column=”1” Style=”{StaticResource

534045c08.indd 339 3/13/10 4:50:49 PM

340 ❘ Chapter 8 Unfinished BUsiness

MeasurementSummaryStackPanelStyle}”>
 <Border Style=”{StaticResource
MeasurementSummaryImageBorderStyle}”>
 <Image x:Name=”CurrentImage” Style=”{StaticResource
MeasurementSummaryImageStyle}” />
 </Border>
 <TextBlock Text=”Current Image” Style=”{StaticResource
MeasurementSummaryImageTextStyle}” />
</StackPanel>

Code snippet MeasurementSummary.xaml

Database, Data Access

Once again, no additional work is required for the database or data access layers.

Business Logic

For the business logic, you’ll again create a custom business object to hold the summary informa-
tion called DailyMeasurementSummary. You’ll also need to add a new service operation to the
MeasurementService class called GetDailyMeasurementSummary. Earlier, I discussed the current limi-
tation of not being able to return a list of complex objects embedded in the DailyMeasurementSummary
class with WCF RIA Services. One way around that limitation is to use the method I showed earlier,
which requires two method calls from the user interface layer.

Another potential option is to return a list of string objects. Although you can’t embed a list of com-
plex types, you can embed a list of string objects. Because you are only worried about displaying
what amounts to a formatted string containing the measurement name, current value, and unit, you
can create a MeasurementValue class and override the ToString method to return a string that can
be returned in the collection embedded in the DailyMeasurementSummary object. To make more
sense out of this, let’s go through it step by step:

 1. Add a new class called MeasurementValue to the MeasurementService code file. It needs
only three properties: the name, unit, and current value. Because you can’t return a list of
these MeasurementValue objects, you’ll return a list of string objects instead where each
string is formatted the way it would be in the ListBox. In order to do this, you simply over-
ride the ToString method. The following code shows the MeasurementValue class.

[EnableClientAccess]
public class MeasurementValue
{
 public MeasurementValue() { }

 [Key]
 public string measurement_name { get; set; }

 public string measurement_unit { get; set; }
 public double? measurement_value { get; set; }

 public override string ToString()
 {

534045c08.indd 340 3/13/10 4:50:49 PM

Solution ❘ 341

 return String.Format(“{0} {1} {2}”, measurement_name,
measurement_value, measurement_unit);
 }
}

Code snippet MeasurementService.cs

 2. Create the DailyMeasurementSummary class that will contain the measurement values as
well as the URL to the most recently uploaded image. Don’t forget that in order for this class
to be exposed to the client from WCF RIA Services, you need the [EnableClientAccess()]
attribute and a public property marked with the [Key] attribute. In this case, you’ll
simply use the entry_date property as the key. The following code shows the
DailyMeasurementSummary class.

[EnableClientAccess()]
public class DailyMeasurementSummary
{
 public DailyMeasurementSummary() { values = new List<string>(); }

 [Key]
 public DateTime entry_date { get; set; }

 public List<string> values { get; set; }
 public string latest_image { get; set; }
}

Code snippet MeasurementService.cs

 3. Add the GetDailyMeasurementSummary method to the MeasurementService class. This
method needs to populate and return a DailyMeasurementSummary instance with the list
of most recent measurement values and the URL to the most recently uploaded image if one
is available. If the user has not provided an image, you will simply return the default image.
The following code shows the implementation for the GetDailyMeasurementSummary
method.

[Invoke]
public DailyMeasurementSummary GetDailyMeasurementSummary(int user_id,
DateTime entry_date)
{
 DailyMeasurementSummary summary = new DailyMeasurementSummary();
 DataLoadOptions options = new DataLoadOptions();

 options.LoadWith<MeasurementLogEntry>(e => e.Measurement);
 options.LoadWith<MeasurementLogEntry>(e => e.MeasurementUnit);

 this.DataContext.LoadOptions = options;

 // Use the grouping feature of LINQ to SQL in order
 // to get the latest measurement
 // log entries for each available measurement

 var latestEntries = (from c in this.DataContext.MeasurementLogEntries

534045c08.indd 341 3/13/10 4:50:49 PM

342 ❘ Chapter 8 Unfinished BUsiness

 where c.entry_date.Date <= entry_date.Date
 && c.Measurement.user_id == 1
 orderby c.entry_date descending
 group c by c.Measurement.measurement_name into latestMeasurements
 select new
 {
 Measurement = latestMeasurements.Key,
 LatestEntry = latestMeasurements.Take(1).SingleOrDefault()
 }).ToList();

 foreach (var entry in latestEntries)
 {
 summary.values.Add(new MeasurementValue
 {
 measurement_name =
entry.LatestEntry.Measurement.
measurement_name,
 measurement_unit = entry.LatestEntry.MeasurementUnit.unit,
 measurement_value = entry.LatestEntry.value
 }.ToString());
 }

 // Now retrieve the most recent user image

 var image = (from i in this.DataContext.MeasurementImages
 where i.user_id == user_id && i.entry_date.Date <= entry_date.Date
 orderby i.entry_date descending
 select i.file_name).Take(1).SingleOrDefault();

 summary.latest_image = image;
 summary.entry_date = entry_date;

 return summary;
}

Code snippet MeasurementService.cs

Before moving on to the code behind I wanted to break down a little bit of the complex LINQ statement
in the previous snippet. In order to get the most recent value for each of the standard measurements from
the measurements table in the database, you typically use a combination of the ORDER BY and
GROUP BY clause in a T-SQL statement. Just because you are using LINQ doesn’t mean you can’t
do something similar. Let’s start with the beginning of the statement:

var latestEntries = (from c in this.DataContext.MeasurementLogEntries
 where c.entry_date.Date <= entry_date.Date
 && c.Measurement.user_id == 1
 orderby c.entry_date descending

This statement will grab all of the measurement log entries for the given day and user and place
them in descending order according to their entry date. Although the Where clause specifies to
retrieve only those entries that match the given entry date, you still want to order them just in case

534045c08.indd 342 3/13/10 4:50:49 PM

Solution ❘ 343

there are multiple entries for the same date but different times. Next you add the LINQ equivalent
of the GROUP BY statement:

group c by c.Measurement.measurement_name into latestMeasurements

This creates a collection behind the scenes of key value pairs where the key is the measurement_name
field and the value is, of course, the actual value that was recorded. It is important to know that
a key value pair collection is being created because you only want one measurement log entry per
standard measurement so you still can’t use the result just yet. The next part of the query will create
a list of key value pairs but ensure that only one measurement value is added to the list for each of
the standard measurements:

select new
{
 Measurement = latestMeasurements.Key,
 LatestEntry = latestMeasurements.Take(1).SingleOrDefault()
}).ToList();

This type of LINQ query can be confusing and I’ll be the first to tell you that
I am not an expert in creating complex LINQ queries. Any further help on
this topic is pretty much out of scope for this book; however, if you refer to
Professional LINQ (Wrox Press, ISBN: 978-0-470-04181-9) by Scott Klein, I’m
sure you will come away with a much better understanding of how the previous
query actually works and what goes on behind the scenes.

User Interface Code Behind

The code behind for the MeasurementSummary control is pretty straightforward. As you might have
guessed, this control also implements the IDailySummary interface and, as you can see, in Listing 8-5,
the LoadSummary method simply retrieves the DailyMeasurementSummary object and sets the
DataContext property of the summary control. Once complete, the only thing left is to set the Source
property of the most recent user image and for that you just use the exact same technique that was
used for the measurement journal. This includes making use of the image_unavailable.png file if
the user has not yet uploaded any image files.

listing 8-5: MeasurementSummary.xaml.cs

using System;
using System.Collections;
using System.Collections.Generic;
using System.Windows.Controls;
using System.Windows.Media.Imaging;
using FitnessTrackerPlus.Web.Services;

namespace FitnessTrackerPlus.Views.Dashboard
{
 public partial class MeasurementSummary : UserControl, IDailySummary

continues

534045c08.indd 343 3/13/10 4:50:49 PM

344 ❘ Chapter 8 Unfinished BUsiness

 {
 private MeasurementContext context = new MeasurementContext();

 public MeasurementSummary()
 {
 InitializeComponent();
 }

#region IDailySummary Members

 public void LoadSummary(int user_id, DateTime summary_date)
 {
 context.Load<DailyMeasurementSummary>(context.
GetDailyMeasurementSummaryQuery(user_id, summary_date),
 (SummaryLoaded) =>
 {
 if (!SummaryLoaded.HasError)
 {
 IEnumerator<DailyMeasurementSummary> enumerator =
SummaryLoaded.Entities.GetEnumerator();
 enumerator.MoveNext();

 this.DataContext = enumerator.Current;

 if (enumerator.Current.latest_image != null)
 {
 BitmapImage updatedImage = null;
#if DEBUG
 updatedImage = new BitmapImage(new
Uri(String.Format(“http://localhost:1154/UploadedImages/{0}”,
enumerator.Current.latest_image), UriKind.Absolute));
#else
 updatedImage = new BitmapImage(new
Uri(String.Format(“http://fitnesstrackerplus.com/UploadedImages/{0}”,
SummaryLoaded.Value.latest_image), UriKind.Absolute));
#endif

 updatedImage.CreateOptions =
BitmapCreateOptions.IgnoreImageCache;
 CurrentImage.Source = updatedImage;
 }
 else
 CurrentImage.Source = new BitmapImage(new
Uri(“/Images/image_unavailable.png”, UriKind.Relative));
 }

 }, null);
 }

#endregion
 }
}

listing 8-5 (continued)

534045c08.indd 344 3/13/10 4:50:50 PM

Solution ❘ 345

Now that the code behind is complete, you should be able to run the project and enter some of your
current measurements into the measurement log page. Once you finish, you can come back to the
dashboard and you should be presented with a MeasurementSummary control similar to the one
shown in Figure 8-5.

Adding Printing Support

Now that all the summary controls are complete and
the dashboard is pretty much finished, it’s time to turn
your attention to adding printing support for the various
DataGrid controls on the food, exercise, and measure-
ment log pages. It seems like a reasonable assumption
that some users might be interested in printing a hard
copy of their entries. Now, of course, those users always
have the option of using the basic browser printing
functionality. However, printing functionality does not
always work out well for a Silverlight application. At
best, it leaves the user with a full-blown screenshot of
the application including the banner, navigation menu,
data input controls and other elements, none of which
are interesting to the user making the hard copy.

As you probably know, one glaring omission from previous versions of Silverlight was interacting
with the printer directly from code. Because of this limitation, it became difficult to nearly impos-
sible for users to print reports or other areas of the screen of interest. Luckily, Microsoft heard users’
requests and added a great new feature to Silverlight 4 — Printer support.

To use this feature, you first need to add a new item to the right-click context menu on the food
log page. The following code shows the updated XAML code for the context menu:

<Canvas x:Name=”RightClickMenu” Style=”{StaticResource RightClickMenuStyle}”>
 <Border x:Name=”RightClickBorder” Style=”{StaticResource
RightClickMenuBorderStyle}”>
 <StackPanel>
 <TextBlock x:Name=”DeleteEntryMenu”
Text=”Delete Selected Entries” Style=”{StaticResource
RightClickMenuItemStyle}” />
 <TextBlock x:Name=”PrintEntryMenu” Text=”Print Entries”
Style=”{StaticResource RightClickMenuItemStyle}” />
 <TextBlock x:Name=”CancelEntryMenu” Text=”Cancel”
Style=”{StaticResource RightClickMenuItemStyle}” />
 </StackPanel>
 </Border>
</Canvas>

Code snippet FoodLog.xaml

Figure 8-5

534045c08.indd 345 3/13/10 4:50:50 PM

346 ❘ Chapter 8 Unfinished BUsiness

In the code behind, you also need to add a MouseLeftButtonDown event handler, which is responsible
for the actual printing of the DataGrid control.

PrintEntryMenu.MouseLeftButtonDown += new
MouseButtonEventHandler(PrintEntryMenu_MouseLeftButtonDown);

Code snippet FoodLog.xaml.cs

In the following code, in order to print the contents of the FoodLogGrid, you first must create a new
PrintDocument object. Next, you assign a name for the document, which in this case is just Food
Log Entries. Most of the action takes place in the PrintPage event handler, which simply uses the
PrintableArea object to stretch the FoodLogGrid to take up all available space. Then the PageVisual
object is set to the actual FoodLogGrid. Finally, the Print method is called and this brings up the
printer dialog and begins the printing operation.

protected void PrintEntryMenu_MouseLeftButtonDown(object sender,
MouseButtonEventArgs e)
{
 PrintDocument entries = new PrintDocument();

 entries.DocumentName = “Food Log Entries”;
 entries.PrintPage += (se, ev) =>
 {
 FoodLogGrid.Width = ev.PrintableArea.Width;
 FoodLogGrid.Height = ev.PrintableArea.Height;

 ev.PageVisual = FoodLogGrid;
 ev.HasMorePages = false;
 };

 entries.Print();

 RightClickMenu.Visibility = Visibility.Collapsed;
}

Code snippet FoodLog.xaml.cs

Basically, the PrintPage event handler is hit just before the page actually prints. This is where you
actually need to tell Silverlight what you’re printing. Stretching the content is an optional step, so
the most important thing to do is make sure the PageVisual object is set to the content you want
printed. As mentioned earlier, this can be any object derived from UIElement.

In this particular example, you are only concerned about printing the FoodLogGrid, so there’s only
one formatted page to be concerned about. This is why the HasMorePages variable is set to false. If
you needed to print a large amount of content and wanted to control exactly what appeared on each
page, you could set HasMorePages to true and the PrintPage event handler code would hit again,
so that you could format the next available page and set the PageVisual.

Again, this is a pretty simple interface and lacks some advanced formatting control — but it is a
start. Don’t be surprised if upcoming versions of Silverlight tweak the way this all works, adding
more formatting options and controlling the printing process, in general.

534045c08.indd 346 3/13/10 4:50:50 PM

Summary ❘ 347

Home Page Screenshot

There is one final item on the agenda for this chapter and that is to take a screenshot for the main
FitnessTrackerPlus home page. Now that all three journal pages are available, you should add
some entries to one and take a screenshot using the simple Alt-PrtScrn combination and Paint. You
already set up the Source property for the main page Image control, so all you have to do is make
sure that the screenshot is saved in the Images folder of the Silverlight project with the filename
screenshot.png. Once you complete this task, you should see something similar to Figure 8-6 when
you fire up the project and navigate to the home page.

Figure 8-6

summary

Another chapter down and only four more to go! Although this chapter didn’t cover any major
new features for the site, it was still important because you needed to finish a number of cleanup
items before moving on. In this chapter, you finally got back to the non-functional dashboard page
and created three summary controls that show the user daily summaries of their food, exercise, and
measurement logs. You also became familiar with the new charting features of the Silverlight Toolkit.
Finally, you saw how simple it is to add important printing support using the new functionality avail-
able in Silverlight 4 — you can basically print any object derived from UIElement. By now you should
be a master at creating any of the available chart types. Just in case you don’t particularly like the

534045c08.indd 347 3/13/10 4:50:50 PM

348 ❘ Chapter 8 Unfinished BUsiness

default look and feel of a given chart, you have also seen how to create a custom control template for
the Chart control. With a custom control template, you can rearrange the Legend or Title proper-
ties, and even eliminate them altogether.

At this point, you are on track to add another important feature to the FitnessTrackerPlus site. Next
on the agenda is the creation of a public journal feature that will let your users easily share their fit-
ness journals with friends, family, or anyone else on the Internet. Of course, some users may object
to the idea of sharing their information so you will have to take that into account when creating the
feature and provide users with the ability to customize the data being shared.

534045c08.indd 348 3/13/10 4:50:50 PM

Sharing Your Success
Creating the Public Fitness Journal

Now that you’ve finished the main data entry features of the site, it’s time to consider adding
an additional feature that will make the site feel more like some of the other Web 2.0–style
sites on the Internet. This chapter focuses on adding some very basic social networking com-
ponents to FitnessTrackerPlus. You’ll enable users of the site to share their fitness journal
information with others. By using the Silverlight Navigation Framework, you’ll see how you
can provide your users with a URL that will lead visitors directly to their public journal and
even allow the page to be bookmarked.

Additionally, visitors that arrive at this public facing version of the user’s fitness journal will
be able to post HTML-based comments in order to provide motivation and support in help-
ing your users achieve their fitness goals. Yes, you heard me right—I did say HTML-based
comments. I know this is a Silverlight application and, as you may have learned the hard way
in your own applications, Silverlight has no native support for displaying HTML based con-
tent unless you use the new WebBrowser control available in Silverlight 4. Unfortunately, this
new control only works in out-of-browser scenarios so this doesn’t really help much in the
FitnessTrackerPlus application.

To provide the comment system you’ll make use of an old friend of mine from the ASP.NET
world called the Ajax Control Toolkit. This powerful, freely available Toolkit provides you
with many Ajax-based controls that integrate nicely in ASP.NET pages. Most important, they
also offer a client-side programming model, which will become extremely important when it
comes to integrating with a Silverlight-based application. FitnessTrackerPlus may not yet be
the next MySpace or Facebook, but still—in order to be relevant on the Web in today’s world
you must acknowledge the power of social networking and at least learn to incorporate some
aspects of this trend in your own Silverlight applications.

9

534045c09.indd 349 3/13/10 4:50:23 PM

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

350 ❘ Chapter 9 Sharing Your SucceSS

problem

Social networking sites such as MySpace and Facebook work on the premise that users love to share
information. Sometimes they can share a little bit too much information but nonetheless the basic
principle is that, if given the opportunity, most users will at least take the time to interact with other
users on the site by creating a profile page. Typically, this profile page has some basic “about me”
text as well as some interests such as favorite movies, bands, and so on. Of course, there is no point
to any of this if you can’t share this profile with other users online in order to get feedback. Even though
you’re developing FitnessTrackerPlus in Silverlight, it should not stop you from adding some basic social
networking components to the site. Now, you already know that competing with the likes of MySpace
and Facebook is a loser’s game, but you do have sort of a niche product here. In theory, if you allow
users to share their fitness journal information with others you should be able to foster a pretty decent
community of fitness-minded users and generate even more traffic to the site.

There are a couple of unique problems you need to solve for your users to share their fitness journals
with others:

You need to decide what information you want users to share on their public profile page. ➤➤

Because users can keep track of their daily foods, exercises, and measurements, that seems
like as good a place as any to start.

Users may also wish to share any images they have uploaded so that visitors can quickly ➤➤

track progress by cycling through the various images of the user over time.

Not all of your users will be interested in sharing this data. In fact, there is still a select group ➤➤

of people online that really value their privacy and will no doubt balk at any attempt from
outside visitors to view their fitness journal. You could ignore this type of user and tell them
to go find a time machine and put the setting to 1995 when nobody shared data online and
“social network” wasn’t the latest buzzword. Doing that, however, would be a huge mistake.
In order to have even a moderately successful site, you need to cater to all of your users.
Remember that when you are running a site, any user that signs up and makes use of the site
is now a customer, and as cliché as it sounds, when trying to generate a buzz for your site
the customer really is always right. That being said, it’s important to ensure that the public
journal feature for FitnessTrackerPlus offers some kind of settings page that allows each indi-
vidual user to decide on what, if anything, will be made available to outside visitors.

You should create the public journal page in such a way that visitors can directly access ➤➤

the page with its own URL. You will most likely want to create a URL that makes use of a
query string that can be used by the public journal page to determine which user’s informa-
tion to bring up. Before the availability of the navigation framework, something like this was
not really possible. The navigation framework not only provides you with a mechanism to
achieve this but also the ability to make use of Query Strings, Deep Linking, and more.

You want to tackle the commenting system. You’ll provide visitors of the public journal ➤➤

page with a system that supports HTML-based comments similar to those on MySpace and
Facebook. Right out of the gate, you have the difficult issue that Silverlight has no native
support for displaying HTML. There are some tricks to overlaying HTML elements over the
Silverlight plug-in and you’ll need to make use of these to properly display the comments on
the public journal page.

534045c09.indd 350 3/13/10 4:50:23 PM

Design ❘ 351

Of course you have to worry not only about displaying the comments but also creating them. ➤➤

This requires some sort of HTML-based editor that visitors can use to post the comments with.
This is where the Ajax Control Toolkit comes in. This freely available toolkit from Microsoft
provides a ton of cool AJAX-based controls including an HTML Editor. Although it’s not a
native Silverlight control, you can still make use of it by resorting to the same HTML overlay-
ing tricks being used to display the HTML comments.

Design

This section is broken into a couple of areas. You need to create a page that allows users to customize
various aspects of their public journal page as well as the actual public journal page itself. This
section also covers how you provide users with a unique URL that can be shared with friends
and family so they have direct access to the user’s public journal page. In addition, you still have
to worry about the HTML-based commenting system. This is going to require design work on both
the comments themselves as well as the HTML editor that visitors will use to post their comments.
Now just to make sure you catch everything in the design, let’s start by creating a detailed list of the
requirements.

Requirements

The problem statements gave you a pretty good idea of the work required so it shouldn’t be too diffi-
cult to come up with a list of requirements for the public journal feature. The following is a detailed
list of requirements extracted from the initial problem statement. The site should:

Provide a public facing version of the user’s fitness journal.➤➤

Display a brief “About Me” section of text.➤➤

Display food, exercise, and measurement log entries.➤➤

Display any uploaded measurement images for the selected date.➤➤

Provide a calendar control so visitors can view previous log entries.➤➤

Provide visitors with the ability to post HTML-based comments on the public journal page.➤➤

Have options for users to enable/disable the sharing of food, exercise, or measurement log ➤➤

entries.

Allow users to modify “About Me” text.➤➤

Allow users to enable/disable comment entry.➤➤

Allow users to enable/disable sharing of any uploaded measurement images.➤➤

Provide a public journal page that’s accessible using a direct URL with a query string in a for-➤➤

mat similar to the following: http://www.fitnesstrackerplus.com/Journals/username.

Ensure that any HTML-based comments are safely encoded using HTML encoding.➤➤

For security purposes, prevent any HTML editor from saving any JavaScript along with the ➤➤

comment.

534045c09.indd 351 3/13/10 4:50:24 PM

352 ❘ Chapter 9 Sharing Your SucceSS

That just about covers everything that you’ll need for the design and implementation of the public
journal page. With the requirements set, let’s move on to the design of the public journal settings
page and see how to best lay out the various settings that will be available to the user.

public Journal settings
The first page that you need to design is the public journal settings page. It’s a pretty simple page
that has the main responsibility of providing a place for users to modify the various settings for their
public journal. From here, users can update their “About Me” text, and enable or disable a host of
sharing options.

User Interface

The user interface required for this page is really not all that complicated. You basically will require
a data entry form that has a TextBox control for the “About Me” text along with a list of CheckBox
controls that will be data bound to the various options. Other than this basic data entry form, the
only other control required will be a Button control that users can click to save changes to the
options.

Database

The database requires a couple of changes to the public journal page options. Because you are already
making use of the user profile to store and retrieve the preferred theme for the user, you should plan on
just extending the profile to include the public journal options. Rather than create an entirely new data-
base table, you can extend the profile table to include the required columns and then add these new fields
to the custom profile provider you created earlier. The WCF RIA Services AuthenticationService
will automatically pick up these new fields, therefore much less work is required than if you were
to add a new table and a separate mechanism for storing and retrieving the public journal options.
Table 9-1 shows the updated proposed profiles table that includes all the public journal options
along with the original fields:

table 9-1: profiles

Column name type DesCription

id int Unique identity field for profile.

current_theme varchar(100) Preferred site theme.

about_text varchar(max) User description text to be displayed on public

journal page.

share_journal bit Enable/disable sharing of any information on public

 journal page. Also enable/disable the ability to reach

the page with custom URL.

share_foods bit Enable/Disable sharing of food log entries.

share_exercises bit Enable/Disable sharing of exercise log entries.

534045c09.indd 352 3/13/10 4:50:24 PM

Design ❘ 353

Column name type DesCription

share_measurements bit Enable/Disable sharing of measurement log entries.

share_images bit Enable/Disable sharing of measurement images.

enable_comments bit Enable/Disable posting and display of HTML comments.

user_id int ID of associated user.

Data Access

Because you are saving the new public journal options directly in the user profile object there should be
no additional LINQ to SQL classes required for this feature. Everything you need should have already
been created earlier on when you were implementing the user registration, login, and theme code.

Business Logic

By deciding to store the public journal options in the existing profile table, you have considerably
cut down the amount of required work in the business logic layer. The full user profile is already
exposed to the client through the AuthenticationService. Just as when you added support for the
CurrentTheme property, you’ll need to update the custom profile provider to reflect the new proper-
ties, and add them to the web.config file so that the ASP.NET profile engine recognizes the addi-
tions. Saving changes to these new properties should be as simple as using the existing SaveUser
method of the WebContext.Current.Authentication class.

User Interface Code Behind

In the code behind for the options page there are two areas of work to be concerned with:

Retrieving the current values for all of the public journal options and binding these values ➤➤

to the user interface controls. You won’t need to invoke any domain service in order to do
this because all the options should now be available right from the user’s profile object.
This means that you can bind the parent of all the data entry controls to the WebContext
.Current.User instance.

Handling the ➤➤ Click event of the Save button. Because two-way data binding is in use here,
the only required code is a call to the SaveUser method. Once the method completes, you
should probably let the user know that all the changes were saved without error by display-
ing a MessageBox control with a brief success message.

public Journal
The public journal page will give users the ability to share their fitness progress with friends, family,
or any other visitor from the Internet. By providing this feature, you are adding a type of social net-
working feature that should make the site stand out against some of its other competitors. This page
should be directly accessible to visitors using a unique URL that is specific to the FitnessTrackerPlus

534045c09.indd 353 3/13/10 4:50:24 PM

354 ❘ Chapter 9 Sharing Your SucceSS

user. Upon arriving at the page, visitors will be able to potentially access food, exercise, and mea-
surement log entries as well as any uploaded images. In addition to these features, users will also
have the ability to leave HTML-based comments providing feedback to other users.

User Interface

The user interface for this page needs to include areas for the “About Me” text, food, exercise, and
measurement log entries, uploaded user images, and visitor comments. Before taking a look at what
possible controls should make up the user interface you should try sketching out a few possible lay-
outs to see how best to organize the displayed information. Figure 9-1 shows one potential layout
for the public journal user interface. This layout gives plenty of space to the log entries, about text,
and comment area while still allowing room for a potential Calendar control that can be used to
view previous log entries.

About Me

Food Log Entries

Exercise Log Entries

Measurement Log Entries

Comment Area

Current Image

Calendar

Figure 9-1

Once you have decided on the layout, figuring out the required controls is not too difficult. For the
“About Me” text area, you just use a basic TextBlock. To the right of this text you will display
the current image using the same Image control you created on the measurement log page. Below
this header information are DataGrid controls for the food, exercise, and measurement log entries.
Unlike the DataGrid controls on the various log pages, however, these DataGrid controls need to
be read-only so you won’t have any CellEditingTemplate declarations. You should also plan on
defaulting these to Collapsed until you have retrieved the public journal settings. Once you have
the settings, you can see which data the user has opted to make available and display the appropri-
ate DataGrid.

534045c09.indd 354 3/13/10 4:50:25 PM

Design ❘ 355

The comment area requires you to provide a mechanism for visitors to leave HTML-based comments.
As I am sure you are well aware, there is no native support in Silverlight for displaying HTML elements
outside of using the new WebBrowser control in an out-of-browser scenario. This being the case, you
must make use of a trick called overlays to achieve the desired effect. Getting this to work requires
you to create a couple of DIV elements on the main FitnessTrackerPlus.aspx page that are absolutely
positioned and remain hidden until the user navigates to the public journal page. Once the public
journal page appears, the code needs to make the DIV elements visible and dynamically create new
DIV elements containing the HTML comment text. This sounds like a pretty daunting task but as
you’ll see in the “Solution,” it’s not really as complicated as it seems at first.

One additional thing to consider is how you want to structure the displayed comments. Most com-
ment areas on websites display the name of the original poster in a hyperlink form that, when
clicked, opens a new browser window to the poster’s own website. Below this is the actual HTML
comment text followed by a footer element that contains the date that the post was created. In all,
you’ll add three separate DIV elements for every comment associated with the page.

The final element to the user interface is the comment form itself. You should plan on creating a basic
data entry form that collects a name, optional website, and of course the comment itself. Because you
want visitors to post HTML and there is no support for it directly in Silverlight, you need to look at
an alternative solution. Many HTML editing controls are available for standard ASP.NET websites
and several of them are even free. Because you will already be overlaying a DIV to hold the HTML
comments themselves, you should be able to use the same tactic to display an HTML editing control
over the Silverlight data entry form as well.

In terms of which HTML editor to use, I suggest looking at the Editor control, which is available
from the ASP.NET Ajax Control Toolkit. Microsoft has provided this toolkit on its CodePlex site
for some time now and it has several powerful controls that work great on traditional ASP.NET
websites. The controls also provide an excellent client-side programming model, so accessing them
through JavaScript is a snap. In the “Solution” section you’ll see why this is so important and how
easy it is to interact with the Editor control directly from the code behind page. In any case, you’ll
be overlaying the Editor control on the data entry form and collecting the raw HTML from this
control to support the posting of HTML comments.

You can download the Toolkit along with all of the controls by visiting http://
ajaxcontroltoolkit.codeplex.com. This site offers both the binary DLL file
as well as all the source code, if you are interested.

Database

The commenting feature of the public journal page will require the creation of a new database table.
Table 9-2 shows journal_comments, which provide a place to store all the comments along with any
information relevant to the poster.

534045c09.indd 355 3/13/10 4:50:25 PM

356 ❘ Chapter 9 Sharing Your SucceSS

table 9-2: journal_comments

Column name type DesCription

id integer Unique identity of comment

name varchar(255) Name of commenter

website varchar(255) Optional website of commenter

comment varchar(max) Actual HTML-encoded comment text

entry_date datetime Date/time that comment was created

user_id int ID of associated user

Data Access

As soon as you created the table to hold the comments, you probably realized that that meant that
another LINQ to SQL classes file would be generated. Nothing new to discuss here—just plan on
adding the new .DBML file to the project and dragging the newly created table over to the designer.
Finally, rebuild the ASP.NET project and you should be done.

Business Logic

The business logic layer for the public journal page poses some interesting challenges. The first thing
you need is a mechanism that provides users with a unique URL for their public journal page. You
can make use of the URI routing features of the navigation framework in order to provide such a
URL. The desire is to create something that can be easily bookmarked and potentially distributed to
friends and family. In traditional ASP.NET sites you could accomplish something like this without dif-
ficulty if you used a query string. For example, in an ASP.NET site you could easily have one .ASPX
page for public journals and display the correct information for the user by extracting a query string
variable called user. Once you had the username you could do a database lookup and dynamically
populate the page accordingly. In previous versions of Silverlight, you really couldn’t do this. Now,
however, with the navigation framework you have full support for query strings. In the Silverlight
project, you could have users distribute a URL such as http://www.fitnesstrackerplus.com/
FitnessTrackerPlus.aspx/Journals/PublicJournal.xaml?user=username. A URL like this
works perfectly fine with the navigation framework and if you combine it with the URI routing feature,
you can hide the .XAML page from the URL and let visitors simply go to Journals/username. An
additional entry in the UriMapper is required to route users to the public journal page from there.

Having this unique URL to the public journal page poses an additional problem, however, in that
when visitors arrive at the public journal page using this direct link there won’t be a currently
logged in user so the public journal settings won’t be available in the code behind. You still need
these options to determine what data if any should be displayed on the page. You can’t really use
the existing AuthenticationService class to retrieve the user profile because that would require
logging into the site, which you don’t want to do in this case. Instead, you need to add a new
DomainService that retrieves a custom public journal settings class using only the username that
is available from the query string variable.

534045c09.indd 356 3/13/10 4:50:25 PM

Solution ❘ 357

Along with the settings, you’ll need some additional methods in this new service that handle both
the creation and retrieval of any comments associated with the public journal.

User Interface Code Behind

In the code behind for the public journal page, you need to handle a few things, including:

Extracting the username from the query string in order to look up the correct public journal ➤➤

settings from the database.

Determining if the user has enabled sharing the public journal. If not, use the navigation ser-➤➤

vice to redirect the user back to the main FitnessTrackerPlus home page. If sharing is enabled,
you need to determine what data is shared and load the necessary items from the various
domain services you have already created. For example, if the user has opted to enable shar-
ing food log entries, use the FoodService to retrieve all the entries for the currently selected
date and bind the data to the read-only food log DataGrid control. You must repeat the same
operation for the exercise and measurement log entries.

If comments are enabled, loading all available comments using the ➤➤ JournalService and
creating individual DIV elements for each of the comments. You’ll then need to add all
these DIV elements to the innerHTML property of the comment area DIV located on the
FitnessTrackerPlus.aspx page.

Making the hidden DIV visible and positioning it in the correct location on the Silverlight ➤➤

control.

Using the HTML DOM Bridge feature of Silverlight to collect the HTML comment text from ➤➤

the Editor control and saving new comment items in the database when the visitor clicks the
Submit button.

Again, don’t worry yet about the details of this HTML integration; at this point you are just making
technology and design decisions. The next section covers how you put all these things together so
that they work.

solution

There is a ton of work to do here in this chapter’s “Solution” section. You first need to create the
public journal settings page, which involves making some modifications to the existing custom pro-
file created way back in the second chapter. You’ll also create a new DomainService to handle all
the public journal operations. Once you have completed the settings page, it’s time to move on to the
public journal page itself, which is where the bulk of the work will be. Here, you’ll see how to use
the HTML Editor control of the ASP.NET Ajax Control Toolkit to allow visitors of this page to
leave HTML-based comments. You’ll also see how to display these comments by overlaying HTML
elements over the existing Silverlight plug-in. Finally, you’ll make use of the navigation framework
in order to provide a unique URL to the public journal page that users can share with others.

534045c09.indd 357 3/13/10 4:50:26 PM

358 ❘ Chapter 9 Sharing Your SucceSS

public Journal settings
Before creating the actual public journal page, your first mission is to create a settings page that
allows users to configure what information, if any, should be shared in the public journal. The design
dictates that users have the option to share their food, exercise, and measurement log entries as well
as any uploaded measurement images. Users can also enable/disable comments, and, of course, can
enable/disable sharing of the public journal altogether.

User Interface

The user interface for the settings page is not terribly complicated. You will, however, have to first
make some modifications to the NavigationMenu control and the App.xaml file before getting
started. There is not currently an entry in the menu for the public journal so you should start by
adding that to the existing NavigationMenu control using the following XAML code:

<toolkit:AccordionItem Tag=”#JournalSettings”>
 <toolkit:AccordionItem.Header>
 <StackPanel Style=”{StaticResource NavigationMenuItemHeaderPanelStyle}”>
 <Image Style=”{StaticResource NavigationMenuItemImageStyle}” />
 <TextBlock Text=”Public Journal” Style=”{StaticResource
NavigationMenuItemTextStyle}” />
 </StackPanel>
 </toolkit:AccordionItem.Header>
 <toolkit:AccordionItem.Content>
 <StackPanel Style=”{StaticResource NavigationMenuItemContentPanelStyle}”>
 <HyperlinkButton x:Name=”JournalSettingsLink”
Content=”Journal Settings” Tag=”#JournalSettings” Style=”{StaticResource
NavigationMenuItemLinkStyle}” />
 <HyperlinkButton x:Name=”ViewJournalLink” Content=”View Journal”
Tag=”#ViewJournal” Style=”{StaticResource NavigationMenuItemLinkStyle}” />
 </StackPanel>
 </toolkit:AccordionItem.Content>
</toolkit:AccordionItem>

Code snippet NavigationMenu.xaml

You already have several AccordionItem entries in the existing Accordion control so you can add
the new entry anywhere in the list. Once you’ve done that, you need to add the following entry to
the UriMapper defined in App.xaml so that when the #JournalSettings AccordionItem is clicked,
the navigation framework navigates to the proper URL:

<uri:UriMapping Uri=”JournalSettings”
MappedUri=”/Views/Journal/JournalSettings.xaml” />

Code snippet App.xaml

With that out of the way, you can now create the Settings page itself. To get started, you should
create a new directory under the current Views directory in the Silverlight project called Journal.
Next, just right-click and add a new Page control called JournalSettings.xaml to the newly created
Journal folder. Once the control is created, you need to create a user interface that displays all the
public journal settings. As shown in the “Design” section, you’ll add all the settings to the existing
Profile object. With this being the case, you can easily create several TextBox controls and bind

534045c09.indd 358 3/13/10 4:50:26 PM

Solution ❘ 359

them to the new public journal Profile properties. Listing 9-1 shows the XAML required for the
public journal settings user interface:

listing 9-1: Journal Settings.xaml

<navigation:Page x:Class=”FitnessTrackerPlus.Views.Journal.JournalSettings”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:navigation=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation”
 Title=”FitnessTrackerPlus - Public Journal Settings”>
 <navigation:Page.Resources>
 <Style x:Key=”JournalSettingsHeaderStyle” BasedOn=”{StaticResource
HeaderTextStyle}” TargetType=”TextBlock”>
 <Setter Property=”Text” Value=”Public Journal Settings” />
 </Style>
 <Style x:Key=”JournalSettingsPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”Margin” Value=”10,10” />
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 <Setter Property=”MaxWidth” Value=”600” />
 </Style>
 <Style x:Key=”AboutTextStackPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”Orientation” Value=”Horizontal” />
 </Style>
 <Style x:Key=”JournalSettingsTextStyle” TargetType=”TextBlock”>
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”Width” Value=”120” />
 </Style>
 <Style x:Key=”AboutTextBoxStyle” TargetType=”TextBox”>
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Margin” Value=”10,10,0,0” />
 <Setter Property=”Width” Value=”400” />
 <Setter Property=”Height” Value=”200” />
 </Style>
 <Style x:Key=”JournalCheckBoxStyle” TargetType=”CheckBox”>
 <Setter Property=”Margin” Value=”0,10” />
 </Style>
 <Style x:Key=”JournalSettingsButtonStyle” TargetType=”Button”>
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Margin” Value=”0,10” />
 </Style>
 </navigation:Page.Resources>
 <StackPanel>
 <TextBlock Style=”{StaticResource JournalSettingsHeaderStyle}” />
 <StackPanel x:Name=”JournalSettingsPanel” Style=”{StaticResource
JournalSettingsPanelStyle}”>
 <StackPanel Style=”{StaticResource AboutTextStackPanelStyle}”>
 <TextBlock Text=”About Me Text:” Style=”{StaticResource
JournalSettingsTextStyle}” />
 <TextBox x:Name=”AboutText” Text=”{Binding
Path=AboutText}” Style=”{StaticResource AboutTextBoxStyle}” />
 </StackPanel>
 <CheckBox x:Name=”ShareJournal” Content=”Share Journal:”
IsChecked=”{Binding Path=ShareJournal}” Style=”{StaticResource

continues

534045c09.indd 359 3/13/10 4:50:26 PM

360 ❘ Chapter 9 Sharing Your SucceSS

JournalCheckBoxStyle}” />
 <CheckBox x:Name=”ShareFoods” Content=”Share Foods:”
IsChecked=”{Binding Path=ShareFoods}” Style=”{StaticResource
JournalCheckBoxStyle}” />
 <CheckBox x:Name=”ShareExercises” Content=”Share Exercises:”
IsChecked=”{Binding Path=ShareExercises}” Style=”{StaticResource
JournalCheckBoxStyle}” />
 <CheckBox x:Name=”ShareMeasurements” Content=”Share
Measurements:” IsChecked=”{Binding Path=ShareMeasurements}”
Style=”{StaticResource JournalCheckBoxStyle}” />
 <CheckBox x:Name=”ShareImages” Content=”Share Images:”
IsChecked=”{Binding Path=ShareImages}” Style=”{StaticResource
JournalCheckBoxStyle}” />
 <CheckBox x:Name=”EnableComments” Content=”Enable Comments:”
IsChecked=”{Binding Path=EnableComments}” Style=”{StaticResource
JournalCheckBoxStyle}” />
 <Button x:Name=”SaveChanges” Content=”Save Changes”
Style=”{StaticResource JournalSettingsButtonStyle}” />
 </StackPanel>
 </StackPanel>
</navigation:Page>

This code listing is pretty straightforward and, in fact, is very similar to the AccountSettings con-
trol you created earlier in the book. Each control is just bound to the appropriate property from the
user’s profile. The intent is that the code behind file takes care of setting the DataContext property
on the JournalSettingsPanel itself and all the TextBox and CheckBox controls simply inherit the
data. Once you have this completed, you are left with a simple and user-friendly interface like the
one shown in Figure 9-2.

Figure 9-2

listing 9-1 (continued)

534045c09.indd 360 3/13/10 4:50:27 PM

Solution ❘ 361

Database

Although you created the profile table earlier in the book, you currently have
only one profile property column called current_theme. To extend the exist-
ing Profile object to handle the public journal settings, you need to add the
additional columns, as shown in the database diagram depicted in Figure 9-3.

You also want to be sure to add a foreign key relationship between the user_id
field and the users table. This will link any inserted comments with the cor-
rect user’s public journal.

Data Access

You’ll need to make changes to the data access layer to match the changes
you just made to the profile table in the database. You have already built the
LINQ to SQL classes required for the Profile object, but they do not cur-
rently have the additional required properties to handle the public journal
settings. One area where LINQ to SQL is a little bit lacking is in refreshing
your existing .DBML files to reflect changes to the database. There is no
built-in mechanism to synch up with the database. You do have the option of
manually adding properties to the table in the diagram but I usually prefer
just deleting the item from the designer entirely and adding a new copy con-
taining the updated fields from the database just to be safe. If you do this for
the Users.dbml file you created previously, you will now be left with the
LINQ to SQL classes, as shown in Figure 9-4.

Once you complete this task, just rebuild the ASP.NET project and the LINQ to SQL code generator
will now create a Profile entity class with the required public journal properties.

Business Logic

To support storage and retrieval of the public journal settings you need to perform a couple of
tasks in the business logic layer. The “Design” section called for you to add the required proper-
ties to the existing Profile class. You have already taken care of the database side, but the custom
Profile provider you created way back in the beginning of the book currently has no support for
these additional properties. To add that support, you start by modifying the custom Profile pro-
vider in the ASP.NET project to handle them. This requires altering both the GetPropertyValues
and SetPropertyValues methods. The following code shows the updated version of the
GetPropertyValues method with added support in the switch statement for all of the new public
journal settings properties.

public override SettingsPropertyValueCollection
GetPropertyValues(SettingsContext context, SettingsPropertyCollection
collection)
{
 SettingsPropertyValueCollection valueCollection = new
SettingsPropertyValueCollection();

 try
 {

Figure 9-3

Figure 9-4

534045c09.indd 361 3/13/10 4:50:27 PM

362 ❘ Chapter 9 Sharing Your SucceSS

 Profile profile = GetProfile(context[“UserName”] as string);

 // If a profile was found then loop through all profile properties and
 // assign appropriate values

 if (profile != null)
 {
 foreach (SettingsProperty property in collection)
 {
 SettingsPropertyValue propertyValue = new
SettingsPropertyValue(property);

 switch (property.Name)
 {
 case “CurrentTheme”:
 {
 propertyValue.PropertyValue =
profile.current_theme;
 break;
 }
 case “AboutText”:
 {
 propertyValue.PropertyValue =
profile.about_text;
 break;
 }
 case “ShareJournal”:
 {
 propertyValue.PropertyValue =
profile.share_journal;
 break;
 }
 case “ShareFoods”:
 {
 propertyValue.PropertyValue =
profile.share_foods;
 break;
 }
 case “ShareExercises”:
 {
 propertyValue.PropertyValue =
profile.share_exercises;
 break;
 }
 case “ShareMeasurements”:
 {
 propertyValue.PropertyValue =
profile.share_measurements;
 break;
 }
 case “ShareImages”:
 {
 propertyValue.PropertyValue =
profile.share_images;

534045c09.indd 362 3/13/10 4:50:27 PM

Solution ❘ 363

 break;
 }
 case “EnableComments”:
 {
 propertyValue.PropertyValue =
profile.enable_comments;
 break;
 }
 }

 valueCollection.Add(propertyValue);
 }
 }
 }
 catch (Exception)
 {
 }

 return valueCollection;
}

Code snippet ProfileProvider.cs

The code required for the SetPropertyValues method is almost identical so I won’t bother dupli-
cating it here. It simply involves adding, once again, additional case statements for each of the new
properties.

Once you modify the custom Profile provider, you still have one more place to worry about and
that is the web.config file. Earlier on, you defined the CustomTheme property there, but you can’t
forget to add these new properties as well. The following code shows the required update to the
web.config file.

<profile enabled=”true” automaticSaveEnabled=”false”
defaultProvider=”FitnessTrackerPlusProfileProvider”>
 <providers>
 <clear/>
 <add name=”FitnessTrackerPlusProfileProvider”
type=”FitnessTrackerPlus.Web.Providers.ProfileProvider”/>
 </providers>
 <properties>
 <add name=”CurrentTheme” type=”String”
customProviderData=”current_theme;varchar;100”/>
 <add name=”AboutText” type=”String”
customProviderData=”about_text;varchar;max”/>
 <add name=”ShareJournal” type=”Bool”
customProviderData=”share_journal;bit”/>
 <add name=”ShareFoods” type=”Bool” customProviderData=”share_foods;bit”/>
 <add name=”ShareExercises” type=”Bool”
customProviderData=”share_exercises;bit”/>
 <add name=”ShareMeasurements” type=”Bool”
customProviderData=”share_measurements;bit”/>
 <add name=”ShareImages” type=”Bool”
customProviderData=”share_images;bit”/>

534045c09.indd 363 3/13/10 4:50:27 PM

364 ❘ Chapter 9 Sharing Your SucceSS

 <add name=”EnableComments” type=”Bool”
customProviderData=”enable_comments;bit”/>
 </properties>
</profile>

Code snippet web.config

Again, you already did similar work when you implemented the theme selection feature so you should
be somewhat familiar with the process of extending the existing Profile class. With these tasks
complete, you can now move on to the code behind logic.

User Interface Code Behind

You need to take care of several items in the code behind file for the public journal settings page. First,
there is some additional CheckBox logic that should be in place. If a user has opted to not share his or
her journal information then that option trumps all others and any other CheckBox controls should
automatically be unchecked. Consequently, if a user selects one of the options to share information,
the ShareJournal CheckBox must also be checked. You can put this logic right in the Loaded event
handler, as shown in the following code:

Loaded += (s, e) =>
{
 ShareJournal.Unchecked += (se, ev) =>
 {
 ShareFoods.IsChecked = false;
 ShareExercises.IsChecked = false;
 ShareMeasurements.IsChecked = false;
 ShareImages.IsChecked = false;
 EnableComments.IsChecked = false;
 };

 ShareFoods.Checked += (se, ev) => { ShareJournal.IsChecked = true; };
 ShareExercises.Checked += (se, ev) => { ShareJournal.IsChecked = true; };
 ShareMeasurements.Checked += (se, ev) => { ShareJournal.IsChecked = true; };
 ShareImages.Checked += (se, ev) => { ShareJournal.IsChecked = true; };
 EnableComments.Checked += (se, ev) => { ShareJournal.IsChecked = true; };

 SaveChanges.Click += new RoutedEventHandler(SaveChanges_Click);
};

Code snippet JournalSettings.xaml.cs

When the user navigates to this settings page, you need to load the user’s Profile object and set up
the data binding for the TextBox controls. This is as simple as overriding the OnNavigatedTo event
handler and setting the DataContext property on the StackPanel that is hosting the TextBox con-
trols. The following code shows the updated OnNavigatedTo method:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 JournalSettingsPanel.DataContext = WebContext.Current.User;
}

Code snippet JournalSettings.xaml.cs

534045c09.indd 364 3/13/10 4:50:28 PM

Solution ❘ 365

Accessing the current profile for the user can be done easily enough by using the WebContext.Current
.User object. The WCF RIA Services AuthenticationService you created earlier automatically
works with the ASP.NET Profile service behind the scenes to ensure that all the new Profile prop-
erties are available from this User object.

The only other item left is adding a handler for the SaveChanges button that will use the
AuthenticationService to persist any changes to the public journal settings. In the following
code snippet, notice how you make use of the SaveUser method of the AuthenticationService
once again to persist changes to the user’s Profile data. Once complete, you just display a short
MessageBox so that the user knows everything was saved correctly.

private void SaveChanges_Click(object sender, RoutedEventArgs e)
{
 WebContext.Current.User.AboutText = AboutText.Text;
 WebContext.Current.User.ShareJournal = ShareJournal.IsChecked.Value;
 WebContext.Current.User.ShareFoods = ShareFoods.IsChecked.Value;
 WebContext.Current.User.ShareExercises = ShareExercises.IsChecked.Value;
 WebContext.Current.User.ShareMeasurements = ShareMeasurements.IsChecked.Value;
 WebContext.Current.User.ShareImages = ShareImages.IsChecked.Value;
 WebContext.Current.User.EnableComments = EnableComments.IsChecked.Value;

 WebContext.Current.Authentication.SaveUser((SettingsSaved) =>
 {
 if(!SettingsSaved.HasError)
 MessageBox.Show(“Your public journal settings have been successfully
updated”);

 }, null);
}

Code snippet JournalSettings.xaml.cs

That takes care of the public journal settings page. Now users can log in and set up the sharing of
the public journal however they would like. They can share some data, all of their data, or nothing
at all. Now comes the difficult part—creating the actual public journal page. There is no sugarcoat-
ing the amount of work involved in creating the public journal page. It’s going to take some serious
effort, so brew a fresh pot of coffee—you are going to need it!

public Journal
With the public journal settings page complete you can turn your attention toward creating the actual
public journal page. As the “Design” section stated, this page will provide an area for some basic
“About Me” text along with any food, exercise, and measurement log entries being shared. In addition
to displaying shared fitness journal information, this page also needs to provide visitors the option of
leaving HTML-based comments. Although it requires more work than if you just provided basic text
comments, Silverlight does give you several classes to make interacting with the DOM relatively pain-
less and, as you will see, the HTML Editor in the Ajax Control Toolkit does the bulk of the heavy
lifting anyway.

534045c09.indd 365 3/13/10 4:50:28 PM

366 ❘ Chapter 9 Sharing Your SucceSS

User Interface

When starting the user interface for the public journal page, you first want to create the page
itself by adding a new Page control to the Silverlight project in the Views\Journal directory called
PublicJournal.xaml. The design suggests that the user interface should consist of a right-aligned
Calendar control along with the “About Me” text, current image, and shared log entries on the
left of the Calendar control, making use of all the remaining space. The easiest way to set this up is
to use the DockPanel control from the Silverlight toolkit and set the Calendar control to Dock on the
right side of the panel. You can then add a StackPanel control to the DockPanel that takes up all
remaining available space. The following XAML shows this initial setup:

<Style x:Key=”PublicJournalCalendarStyle” TargetType=”controls:Calendar”>
 <Setter Property=”SelectionMode” Value=”SingleDate” />
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Right” />
</Style>
<Style x:Key=”ProfileStackPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”toolkit:DockPanel.Dock” Value=”Left” />
 <Setter Property=”Margin” Value=”0,0,10,0” />
</Style>
<toolkit:DockPanel LastChildFill=”True”>
 <controls:Calendar x:Name=”Calendar” Style=”{StaticResource
PublicJournalCalendarStyle}” />
 <StackPanel x:Name=”MainStackPanel” Style=”{StaticResource
ProfileStackPanelStyle}” >
 </StackPanel>
</toolkit:DockPanel>

Code snippet PublicJournal.xaml

With that done, you can start adding controls to the StackPanel beginning with a Grid control that
will house both the “About Me” text and the current image, if one exists, for the currently selected
date.

<Style x:Key=”ImageBorderStyle” TargetType=”Border”>
 <Setter Property=”BorderBrush” Value=”#FF000000” />
 <Setter Property=”Background” Value=”#FFFFFFFF” />
 <Setter Property=”BorderThickness” Value=”1” />
 <Setter Property=”Width” Value=”175” />
 <Setter Property=”Height” Value=”200” />
</Style>
<Style x:Key=”ImageStyle” TargetType=”Image”>
 <Setter Property=”Stretch” Value=”Fill” />
</Style>
<Style x:Key=”ImageTextStyle” TargetType=”TextBlock”>
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”HorizontalAlignment” Value=”Center” />
</Style>

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”*” />
 <ColumnDefinition Width=”Auto” />
 </Grid.ColumnDefinitions>
 <TextBlock x:Name=”AboutText” Grid.Column=”0” />

534045c09.indd 366 3/13/10 4:50:28 PM

Solution ❘ 367

 <StackPanel Grid.Column=”1”>
 <Border Style=”{StaticResource ImageBorderStyle}”>
 <Image x:Name=”CurrentImage”
Style=”{StaticResource ImageStyle}” />
 </Border>
 <TextBlock Text=”Current Image”
Style=”{StaticResource ImageTextStyle}” />
 </StackPanel>
</Grid>

Code snippet PublicJournal.xaml

If users decide to share their food, exercise, and measurement log entries, you need to have DataGrid
controls available to display those entries. For obvious reasons visitors should not be allowed to
make changes to the data in those DataGrid controls, so you will need to alter the existing DataGrid
controls by removing any CellEditingTemplate columns and setting the DataGrid controls to be
ReadOnly. In the following code, you can see the XAML declaration required for the read-only ver-
sion of the food log DataGrid. Because the other DataGrid control declarations are very similar they
aren’t included in this snippet.

<Style x:Key=”ReadOnlyDataGrid” TargetType=”data:DataGrid”>
 <Setter Property=”AutoGenerateColumns” Value=”False” />
 <Setter Property=”IsReadOnly” Value=”True” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”HorizontalScrollBarVisibility” Value=”Auto” />
 <Setter Property=”CanUserResizeColumns” Value=”True” />
 <Setter Property=”SelectionMode” Value=”Single” />
 <Setter Property=”Visibility” Value=”Collapsed” />
 <Setter Property=”ColumnWidth” Value=”SizeToHeader” />
</Style>

<data:DataGrid x:Name=”FoodLogGrid” Style=”{StaticResource ReadOnlyDataGrid}”>
 <data:DataGrid.Columns>
 <data:DataGridTemplateColumn Header=”Foods”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=Food.name}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Servings”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=servings}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Serving Size”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>

534045c09.indd 367 3/13/10 4:50:28 PM

368 ❘ Chapter 9 Sharing Your SucceSS

 <TextBlock Text=”{Binding Path=Food.serving_size}”
Style=”{StaticResource DataGridTextBlock}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Fat” HeaderStyle=”{StaticResource
DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=Food.fat}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Carb” HeaderStyle=”{StaticResource
DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=Food.carbohydrate}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Pro” HeaderStyle=”{StaticResource
DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=Food.protein}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
</data:DataGrid>

Code snippet PublicJournal.xaml

Once you have all that set up, you need to start creating the commenting areas. Two things to con-
sider for the comments:

You need an area to display the HTML comments. As I said earlier, even though it’s not ➤➤

directly supported in Silverlight, you can still display HTML in your Silverlight application.
The trick is to overlay HTML elements directly over the plug-in. To support this, you make
a small change to the Silverlight plug-in declaration in the main FitnessTrackerPlus.aspx page.
To display the overlays, you set the Windowless property to true, as shown in following code:

<object data=”data:application/x-silverlight-2,”
type=”application/x-silverlight-2” width=”100%” height=”100%”>
 <param name=”source” value=”ClientBin/FitnessTrackerPlus.xap”/>
 <param name=”minRuntimeVersion” value=”3.0.40624.0” />
 <param name=”autoUpgrade” value=”true” />
 <param name=”Windowless” value=”true” />

Code snippet FitnessTrackerPlus.aspx

534045c09.indd 368 3/13/10 4:50:29 PM

Solution ❘ 369

You need a DIV element somewhere on the page that is responsible for displaying the HTML ➤➤

comments. The basic principle here is that you will retrieve the comments from the database
and then in the code behind create individual DIV elements for each comment. You will then
add each of these as child elements to the main DIV on the FitnessTrackerPlus.aspx page. The
following code is the declaration of the placeholder DIV element that will be used to display
all of the public journal comments:

<div id=”comment_area”
style=”position:absolute;top:0px;left:0px;width:600px;display:none;”></div>

Code snippet FitnessTrackerPlus.aspx

You’ll notice from this snippet that the DIV is absolutely positioned at 0, 0 and is not being displayed.
By default, you don’t want this placeholder visible until you are sure that the user has enabled com-
ments on his or her public journal page. As far as the location of the DIV, you dynamically size and
position it in the code behind using the HTML DOM Bridge feature of Silverlight to make sure the
comments appear in the correct place on the page. To correctly position this DIV on the page, you
need some kind of reference point. Basically, a Silverlight element should act as a placeholder for this
DIV. A Grid control will work quite nicely for this purpose, so you can add one directly below the
last DataGrid control. The following code shows the declaration of the placeholder Grid:

<Style x:Key=”CommentAreaStyle” TargetType=”Grid”>
 <Setter Property=”HorizontalAlignment” Value=”Center” />
</Style>

<Grid x:Name=”CommentArea” Style=”{StaticResource CommentAreaStyle}” />

Code snippet PublicJournal.xaml

For now, this is all you need to worry about regarding the comment area. The remainder of the
work takes place in the code behind. The last item needed on the user interface is the actual com-
ment form. This isn’t terribly difficult and can be implemented using a Grid and some TextBox
controls. The following XAML declaration shows the comment entry form for the page added just
below the comment Grid placeholder control:

<Style x:Key=”CommentHeaderStyle” TargetType=”TextBlock”>
 <Setter Property=”FontSize” Value=”16” />
 <Setter Property=”FontWeight” Value=”Bold” />
 <Setter Property=”Margin” Value=”0,20,0,10” />
</Style>
<Style x:Key=”CommentFormStyle” TargetType=”Grid”>
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”HorizontalAlignment” Value=”Center” />
</Style>
<Style x:Key=”CommentEntryDataStyle” TargetType=”TextBox”>
 <Setter Property=”Height” Value=”300” />
 <Setter Property=”Width” Value=”500” />
 <Setter Property=”HorizontalAlignment” Value=”Left” />
 <Setter Property=”Margin” Value=”10,0,0,5” />
</Style>
<Style x:Key=”CommentEntryTextBoxStyle” TargetType=”TextBox”>

534045c09.indd 369 3/13/10 4:50:29 PM

370 ❘ Chapter 9 Sharing Your SucceSS

 <Setter Property=”Height” Value=”25” />
 <Setter Property=”Width” Value=”250” />
 <Setter Property=”HorizontalAlignment” Value=”Left” />
 <Setter Property=”Margin” Value=”10,0,0,5” />
</Style>
<Style x:Key=”CommentSubmitStyle” TargetType=”Button”>
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Margin” Value=”10,10,0,0” />
</Style>

<Grid x:Name=”CommentForm” Style=”{StaticResource CommentFormStyle}”>
 <Grid.RowDefinitions>
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”Auto” />
 <RowDefinition Height=”Auto” />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width=”Auto” />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Row=”0” Grid.Column=”0” Grid.ColumnSpan=”2” Text=”Leave Your
Comments” Style=”{StaticResource CommentHeaderStyle}” />
 <TextBlock Grid.Row=”1” Grid.Column=”0” Text=”Name:” />
 <TextBlock Grid.Row=”2” Grid.Column=”0” Text=”Website (Optional):” />
 <TextBlock Grid.Row=”3” Grid.Column=”0” Text=”Comment:” />
 <TextBox x:Name=”Name” Grid.Row=”1” Grid.Column=”1” Style=”{StaticResource
CommentEntryTextBoxStyle}” />
 <TextBox x:Name=”Website” Grid.Row=”2” Grid.Column=”1” Style=”{StaticResource
CommentEntryTextBoxStyle}” />
 <TextBox x:Name=”Comment” Grid.Row=”3” Grid.Column=”1” Style=”{StaticResource
CommentEntryDataStyle}” />
 <Button x:Name=”Submit” Grid.Row=”4” Grid.Column=”1” Content=”Submit”
Style=”{StaticResource CommentSubmitStyle}” />
</Grid>

Code snippet PublicJournal.xaml

The controls declared in the comment entry form are self explanatory. There is a TextBox for each of the
properties related to a JournalComment object. There is one exception to this, however, and that is the
Comment TextBox itself. The design makes use of the Editor control from the AJAX Control Toolkit
to provide comment entry. Because this is yet another HTML-based control, you need a correspond-
ing Silverlight control to use as a placeholder for the Editor control. You won’t actually use either the
CommentArea Grid control or the Comment TextBox control directly in your code behind. The role of
these two controls is strictly to provide a reference point for their HTML counterparts. The code behind
logic takes care of moving the HTML-based DIV elements directly over these Silverlight controls so the
user will see the HTML-based DIV as opposed to the TextBox or Grid controls.

The last element of the user interface is the Editor control from the AJAX Control Toolkit. For this,
you need to first add the assembly to your ASP.NET project by following these steps:

 1. Open the FitnessTrackerPlus.aspx file and right-click the Toolbox area.

 2. When the menu choices appear, select Add Tab and call the new tab Ajax Control Toolkit.

534045c09.indd 370 3/13/10 4:50:29 PM

Solution ❘ 371

 3. Right-click in the newly created tab and select the Choose Items menu option. This brings
up a window that will let you browse for the AjaxControlToolkit.dll file. After selecting the
DLL, the toolbox tab will be filled with all of the available toolkit controls.

 4. You only need the Editor control so you can go ahead and drag it over to a new DIV called
comment_editor on the main FitnessTrackerPlus.aspx page. At this point, you should have a
new DIV with the Editor control, as the following code shows:

<%@ Register Assembly=”AjaxControlToolkit”
Namespace=”AjaxControlToolkit.HTMLEditor” TagPrefix=”asp” %>

<div id=”comment_editor” style=”position:absolute;
top:0px;left:0px;display:none;”>
 <asp:Editor runat=”server” ID=”CommentEditor” NoScript=”true” />
</div>

Code snippet FitnessTrackerPlus.aspx

The Editor control provides a great property called NoScript that automatically removes any
JavaScript that may have been added to the control. Because the requirements and design state
that JavaScript will not be allowed, you will set the NoScript property to true.

At this point, you have all the required HTML and XAML declarations for the public journal
page. The Silverlight plug-in is set up correctly to support the HTML overlay trick that you’ll
use. The required placeholder controls have been added to both the FitnessTrackerPlus.aspx and
PublicJournal.xaml pages. When you run the application and navigate to the public journal page,
you should see the HTML comments appear as they do in Figure 9-5, and the data entry form should
include the HTML Editor control appearing directly over the form, as shown in Figure 9-6.

Figure 9-5

534045c09.indd 371 3/13/10 4:50:29 PM

372 ❘ Chapter 9 Sharing Your SucceSS

Figure 9-6

Database

For the database layer implementation you need to create the journal_comments table as outlined in
the “Design” section. Once again, to do this, follow these steps:

 1. Right-click the FitnessTrackerPlus database and add a new table called journal_comments.

 2. Add all the columns defined in the design and make sure to set the ID
field as an auto-incrementing identity field as well as the primary key
for the table.

 3. Set up a foreign key relationship linking the user_id field with the
ID field from the users table. This makes it possible to load all of the
comments for each user’s public journal page. Figure 9-7 shows the
database diagram you should be left with once the table is created.

Data Access

Once you finish creating the required database table, you’ll need to add a new LINQ to SQL file to
the project to create the required entities. In this case, you should follow these steps:

 1. Add a new LINQ to SQL classes file called Journal.dbml.

 2. Drag the journal_comments table over to the designer.

 3. Rename the journal_comment entity to JournalComment.

 4. Rebuild the ASP.NET project.

Figure 9-7

534045c09.indd 372 3/13/10 4:50:29 PM

Solution ❘ 373

At this point, you’ll have the required JournalComment entity defined and
the DomainService you are about to create will use this entity. Figure 9-8
shows the updated LINQ to SQL file that you should be left with when you
are finished with this step.

Business Logic

With the database table and data access layer complete, it’s time to move on
to the business logic once again. The bulk of the work in the remaining part
of this chapter is spent in the business logic layer and the code behind. The
user interface requires a new DomainService class in order to support both the
display and creation of public journal comments by following these steps:

 1. Add a new DomainService to the ASP.NET project.

 2. Call this one JournalService.

 3. Select the newly created JournalDataContext and the JournalComment entity.

 4. You also need to check the Enable editing and Generate associated classes for metadata
options.

When visitors arrive at a particular public journal page, note that certain information will not be
available at the user interface layer. For example, even though all the public journal settings are easily
retrieved using the WebContext.Current.User object under normal circumstances, they are not avail-
able to anonymous users that have not logged into FitnessTrackerPlus. The public journal page needs
to access these settings in order to determine what data, if any, to make available to the visitor. For
security purposes, you don’t really want to simply return the UserInformation object containing the
full users Profile because it also includes things such as e-mail address, password, and other user-
specific settings. The public journal page does not need any of this information, so rather than return
the entire UserInformation object, you need an alternate solution.

In most cases, when you use WCF RIA Services you will return a collection of Entity classes that
are defined using the Entity Framework or LINQ to SQL, but in this case, you want to return just
a custom object that contains only a handful of fields and that was not generated using the LINQ
to SQL code generator. As you saw in the previous chapter, when using WCF RIA Services, you are
not strictly limited to returning predefined entities; you can also return simple POCO objects with
just a few additional lines of code. In this case, you just want an object that contains the user_id
and the public journal settings; so in the JournalService.cs file you should create a new class called
PublicJournalSettings. Once you add the required properties, you should do the following to
ensure that the custom class is exposed:

Add the ➤➤ [EnableClientAccess()] attribute directly above the class declaration.

Select one of the properties as the unique key for the entity. In this case, that is the ➤➤ user_name
property.

Figure 9-8

534045c09.indd 373 3/13/10 4:50:29 PM

374 ❘ Chapter 9 Sharing Your SucceSS

The following code shows the PublicJournalSettings class that you need to create:

[EnableClientAccess()]
public class PublicJournalSettings
{
 [Key]
 public string user_name { get; set; }
 public string about_text { get; set; }
 public int user_id { get; set; }

 public bool share_foods { get; set; }
 public bool share_exercises { get; set; }
 public bool share_measurements { get; set; }
 public bool share_images { get; set; }
 public bool enable_comments { get; set; }
}

Code snippet JournalService.cs

Once you have a simple class to hold just the public journal properties, you can then add a method
to the JournalService that returns the public journal settings for the public journal page being
queried. In the following code snippet, the custom MembershipProvider is used to first retrieve an
instance of the UserInformation object using just the user_name parameter passed in from the
client after extracting it from the query string.

public PublicJournalSettings GetPublicJournalSettings(string user_name)
{
 // Check the profile for the selected user and see if they have enabled
 // sharing of thier public journal

 FitnessTrackerPlus.Web.Providers.MembershipProvider provider =
Membership.Provider as FitnessTrackerPlus.Web.Providers.MembershipProvider;
 UserInformation user = provider.GetUserByUserName(user_name) as
UserInformation;

 if (user.Profiles[0].share_journal)
 return new PublicJournalSettings
 {
 user_name = user.username,
 user_id = user.id,
 share_foods = user.Profiles[0].share_foods,
 share_exercises = user.Profiles[0].share_exercises,
 share_measurements = user.Profiles[0].share_measurements,
 share_images = user.Profiles[0].share_images,
 enable_comments = user.Profiles[0].enable_comments,
 about_text = user.Profiles[0].about_text
 };

 return null;
}

Code snippet JournalService.cs

534045c09.indd 374 3/13/10 4:50:30 PM

Solution ❘ 375

Notice how once you have a valid UserInformation object you can just access the Profiles collec-
tion. In this case, because you are not supporting multiple profiles for each user, you just make use
of the first Profile in the collection. If for some reason the user decides not to share his or her jour-
nal at all, you will return a null PublicJournalSettings object. The code behind for the public
journal page can then redirect the user back to the FitnessTrackerPlus home page if no settings are
available for the public journal being requested.

The only other operations that are needed in this DomainService are support for retrieval and cre-
ation of any comments associated with the public journal. The expectation is that the code behind
will first call the GetPublicJournalSettings method and at that point will have access to not only
all of the settings but also the user_id for the public journal being queried. For this reason, you can
make use of the user_id instead of the user_name when actually retrieving the comments. The fol-
lowing code shows the GetJournalComments method, which retrieves all comments associated with
a particular user’s public journal, as well as the InsertJournalComment, which just simply creates a
new comment in the database:

public IQueryable<JournalComment> GetJournalComments(int user_id)
{
 return this.Context.JournalComments.Where(e => e.user_id ==
user_id).OrderByDescending(e => e.entry_date);
}

public void InsertJournalComment(JournalComment journalComment)
{
 this.Context.JournalComments.InsertOnSubmit(journalComment);
}

Code snippet JournalService.cs

User Interface Code Behind

At this point you should have everything to work on the public journal code behind page. You have
a lot of work to do here and this page can quickly become very complex, so before diving into the
code let’s take a quick look at the various things that you need to accomplish as well as the order
you should do them in:

Provide a unique URL for accessing the public journal page.➤➤

Position the comment DIV elements directly over the associated Silverlight placeholder ➤➤

controls.

Load the public journal settings when a visitor arrives at the page.➤➤

Determine what data, if any, should display to the visitor.➤➤

Load and display any HTML comments associated with the journal.➤➤

Handle the calendar date selection so visitors can view previously recorded entries.➤➤

Capture and submit any HTML comments being posted by the visitors.➤➤

534045c09.indd 375 3/13/10 4:50:30 PM

376 ❘ Chapter 9 Sharing Your SucceSS

Earlier you created the user interface for the public journal page, but as of now there is no real func-
tionality behind it. You also have no way of actually accessing the page so the first item of work on
the list is providing the unique URL where visitors can reach the public journal page. The Silverlight
navigation framework gives you the perfect solution for this problem. By combining a simple query
string variable with the URI mapping scheme set up in the App.xaml file, you can provide users with
a unique URL to their public journal page, which can be bookmarked and visited directly. The goal
is to set up a URL in the format http://www.fitnesstrackerplus.com/#Journals/username. To
do this, you simply add the following line to the UriMapper declarations:

<uri:UriMapping Uri=”Journals/{username}”
MappedUri=”/Views/Journal/PublicJournal.xaml?user={username}” />

Code snippet App.xaml

As you can see, any URL ending in “Journals/username” is mapped to the PublicJournal.xaml page.
The mapped URL also contains a query string variable called user that contains the username of
the public journal page to be loaded. With this mapping in place, the full URL to any given user’s
public journal page becomes http://www.fitnesstrackerplus.com/FitnessTrackerPlus
.aspx#Journals/username. This is still a little bit lengthy, but in Silverlight you are still required
to have the # character in the URL. If you are interested in giving your users an easier URL to
remember, you could take this concept a step further and add an ASP.NET URL Rewriting feature
that takes an even simpler format such as http://www.fitnesstrackerplus.com/username. This
Rewriting feature is responsible for mapping the simple URL to the one that Silverlight requires.
Because the Silverlight version of the URL can be bookmarked and is unique it’s sufficient for this
first version of FitnessTrackerPlus. If any users start to express a desire for an even shorter URL,
you can always add this additional ASP.NET step to accommodate them in a future release.

When creating the user interface, you added a couple of placeholder controls that will be used as a
reference point for positioning the comment DIV elements on the .ASPX page. You should have a
DIV for the comment area itself as well as a DIV to hold the Editor control from the AJAX Control
Toolkit. On the public journal page you have a Grid control called CommentArea that will act as a
reference point for the comment_area DIV. You also have a TextBox control called Comment that
will be used as a reference point for the comment_editor DIV. If you were to simply make both of
these DIV elements visible at this point you would see that they both appear overlaid on top of the
plug-in at the top-left corner of the screen. Of course, this isn’t particularly useful so you need to
add a method that’s responsible for sizing and positioning these DIV elements directly over their
placeholder counterparts.

Before adding this method, consider that the method will need to be called not only when the page is
first loaded but also anytime the user makes use of the ScrollViewer control. When a user scrolls,
the method will move the location of the placeholder controls but the overlaid DIV elements will not
automatically stay in synch. Therefore, this method needs to be called whenever the page is scrolled.
The best place to do that is in the LayoutUpdated event of the ScrollViewer control. Earlier you
added the ScrollViewer control to the static Globals class so you should have access to it and its
events. Wiring up the event handler to position the comment controls is done with one line of code:

Globals.MainScroll.LayoutUpdated += (se, ev) => { PositionCommentControls(); };

Code snippet PublicJournal.xaml.cs

534045c09.indd 376 3/13/10 4:50:30 PM

Solution ❘ 377

That takes care of finding a good place to call the positioning method; now take a look at the full
implementation of the PositionCommentControls method and break down how it works:

private void PositionCommentControls()
{
 UIElement root = Application.Current.RootVisual as UIElement;
 GeneralTransform gt = Comment.TransformToVisual(root);
 Point pos = gt.Transform(new Point(0, 0));

 HtmlElement editor = HtmlPage.Document.GetElementById(“comment_editor”);
 HtmlElement comments = HtmlPage.Document.GetElementById(“comment_area”);

 editor.SetStyleAttribute(“top”, pos.Y.ToString() + “px”);
 editor.SetStyleAttribute(“left”, pos.X.ToString() + “px”);
 editor.SetStyleAttribute(“width”, Comment.ActualWidth.ToString() + “px”);
 editor.SetStyleAttribute(“height”, Comment.ActualHeight.ToString() + “px”);

 gt = CommentArea.TransformToVisual(root);
 pos = gt.Transform(new Point(0, 0));

 comments.SetStyleAttribute(“top”, pos.Y.ToString() + “px”);
 comments.SetStyleAttribute(“left”, pos.X.ToString() + “px”);
}

Code snippet PublicJournal.xaml.cs

Because the comment_area and comment_editor DIV elements are absolutely positioned you can
make use of the SetStyleAttribute method of the HtmlPage class to position these DIV elements
directly over their Silverlight placeholder counterparts. The trick is to know the coordinates of the
placeholder controls. This is where the TransformToVisual method, shown in the previous code
snippet, is useful. To do this, follow these steps:

 1. Grab the RootVisual object, which is the parent of all the controls in the Silverlight
application.

 2. Take the Comment placeholder control and call TransformToVisual, passing in the root
object. This gives you the coordinates of the Comment control relative to the RootVisual.

It is important to note that you can do this with any UIElement control, so you
can easily retrieve the coordinates relative to another.

 3. Once you have the coordinates of the Comment control, you just set the comment_editor
DIV element to be positioned using these same coordinates.

 4. Make sure that the size of the comment_editor DIV is the same as the Comment placeholder
control. For that you want to use the ActualWidth and ActualHeight properties of the
Comment control.

534045c09.indd 377 3/13/10 4:50:30 PM

378 ❘ Chapter 9 Sharing Your SucceSS

Once you have completely positioned the comment_editor DIV, you need to do the same thing for
the comment_area DIV. You have a placeholder Grid control that the comment_area DIV will be
overlaid against. You just use the same TransformToVisual method to get the coordinates of the
placeholder Grid control relative to the application root and position the comment_area accordingly.
In both calls to the TransformToVisual method, you are passing in a Point object that simply tells
the TransformToVisual method any offset you wish to use when calculating the coordinates. In
both cases, you won’t be passing in any offset. Instead, you just retrieve the coordinates starting
from the top-left corner of the application root.

Before loading any data on the public journal page from the JournalService you created earlier, you
add a Loaded event handler to set up some required control event handlers. In the following code, the
Loaded event ensures that the DataGrid display trick that each journal log page uses is also used on
this page. This ensures that the first DataGrid column is expanded to fill up any leftover screen space,
eliminating the empty space to the right of the last DataGrid column that is usually displayed. The
Loaded event also sets up the ItemsSource properties for the various DataGrid controls and adds
event handlers for when the visitor changes the selected date or attempts to post a new comment.

Loaded += (s, e) =>
{
 Globals.MainScroll.LayoutUpdated += (se, ev) =>
 {
 PositionCommentEntry();

 DataGridHelper.ResizeGrid(0, FoodLogGrid);
 DataGridHelper.ResizeGrid(0, CardioLogGrid);
 DataGridHelper.ResizeGrid(0, WeightTrainingLogGrid);
 DataGridHelper.ResizeGrid(0, ActivityLogGrid);
 DataGridHelper.ResizeGrid(0, MeasurementLogGrid);
 };

 Calendar.SelectedDate = DateTime.Now;
 Calendar.SelectedDatesChanged += (se, ev) => { LoadPublicJournal(); };

 AboutText.Text = “”;

 FoodLogGrid.ItemsSource = foodContext.FoodLogEntries;
 MeasurementLogGrid.ItemsSource =
measurementContext.MeasurementLogEntries;

 Submit.Click += new RoutedEventHandler(Submit_Click);
};

Code snippet PublicJournal.xaml.cs

The next step in the code behind is to actually load the required data for the public journal page. The
main reason behind mapping to a URL with a query string is so that you know which user’s data to
load on this page. This query string variable is made available in the OnNavigatedTo event handler.

In the following code, the username is extracted from the query string and retrieves the
PublicJournalSettings object. If a null object is returned, then this particular user has declined

534045c09.indd 378 3/13/10 4:50:30 PM

Solution ❘ 379

to share their public journal page so the visitor is redirected to the main FitnessTrackerPlus home
page. Otherwise, the LoadPublicJournal method, which is responsible for actually retrieving any
of the data that the user has decided to share, is called.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 try
 {
 string user = NavigationContext.QueryString[“user”];

 // Load the public journal settings for the requested user
 // if the public journal settings instance is null than that
 // user has not elected to share thier journal

 if (!String.IsNullOrEmpty(user))
 {
 Title = String.Format(“{0}’s Fitness Journal”, user);

 journalContext.Load<PublicJournalSettings>(journalContext.
GetPublicJournalSettingsQuery(user),
 (JournalLoaded) =>
 {
 if (!JournalLoaded.HasError)
 {

 IEnumerator<PublicJournalSettings> enumerator =
JournalLoaded.Entities.GetEnumerator();
 enumerator.MoveNext();

 if (enumerator.Current != null)
 {
 // At this point we have a valid PublicJournal
 // object so the user is currently sharing
 // journal information now we need to look
 // at what options have been enabled

 settings = enumerator.Current;
 LoadPublicJournal();
 }
 else
 NavigationService.Navigate(new Uri(“Home”,
UriKind.Relative));
 }
 else
 NavigationService.Navigate(new Uri(“Home”,
UriKind.Relative));

 }, null);
 }
 else
 NavigationService.Navigate(new Uri(“Home”, UriKind.Relative));
 }

534045c09.indd 379 3/13/10 4:50:31 PM

380 ❘ Chapter 9 Sharing Your SucceSS

 catch (Exception)
 {
 NavigationService.Navigate(new Uri(“Home”, UriKind.Relative));
 }
}

Code snippet PublicJournal.xaml.cs

The next area to look at is the LoadPublicJournal method, which is responsible for actually loading
any shared data and comments. In the following code snippet, the various settings are examined to
see if they have been enabled. If so, then the appropriate data is loaded into the various DataGrid
controls. In addition to loading the data, the Visibility property of the user interface controls is
toggled depending on whether the user decided to share the associated information.

private void LoadPublicJournal()
{
 if (settings != null)
 {
 if (settings.share_foods)
 {
 foodContext.Load<FoodLogEntry>(foodContext.
GetFoodLogEntriesQuery(settings.user_id, Calendar.SelectedDate.Value, false));
 FoodLogGrid.Visibility = Visibility.Visible;
 }
 else
 FoodLogGrid.Visibility = Visibility.Collapsed;

 if (settings.share_exercises)
 {
 exerciseContext.Load<ExerciseLogEntry>(exerciseContext.
GetExerciseLogEntriesQuery(Calendar.SelectedDate.Value, settings.user_id),
 LoadBehavior.RefreshCurrent, (EntriesLoaded) =>
 {
 if (!EntriesLoaded.HasError)
 {
 CardioLogGrid.ItemsSource =
EntriesLoaded.Entities.Where(ev => ev.Exercise.exercise_type == 1);
 WeightTrainingLogGrid.ItemsSource =
EntriesLoaded.Entities.Where(ev => ev.Exercise.exercise_type == 2);
 ActivityLogGrid.ItemsSource =
EntriesLoaded.Entities.Where(ev => ev.Exercise.exercise_type == 3);
 }

 }, null);

 CardioLogGrid.Visibility = Visibility.Visible;
 WeightTrainingLogGrid.Visibility = Visibility.Visible;
 ActivityLogGrid.Visibility = Visibility.Visible;
 }
 else
 {
 CardioLogGrid.Visibility = Visibility.Collapsed;
 WeightTrainingLogGrid.Visibility = Visibility.Collapsed;

534045c09.indd 380 3/13/10 4:50:31 PM

Solution ❘ 381

 ActivityLogGrid.Visibility = Visibility.Collapsed;
 }

 if (settings.share_measurements)
 {
 measurementContext.Load<MeasurementLogEntry>(measurementContext.
GetMeasurementLogEntriesQuery(settings.user_id, Calendar.SelectedDate.Value));
 MeasurementLogGrid.Visibility = Visibility.Visible;
 }
 else
 MeasurementLogGrid.Visibility = Visibility.Collapsed;

 if (settings.share_images)
 {
 measurementContext.Load<MeasurementImage>(measurementContext.
GetMeasurementImageQuery(settings.user_id, Calendar.SelectedDate.Value),
 LoadBehavior.RefreshCurrent, (ImageLoaded) =>
 {
 if (!ImageLoaded.HasError)
 {
 BitmapImage updatedImage = null;
 MeasurementImage currentImage =
ImageLoaded.Entities.FirstOrDefault<MeasurementImage>();

 if (currentImage != null)
 {
#if DEBUG
 updatedImage = new BitmapImage(new
Uri(String.Format(“http://localhost:32490/UploadedImages/{0}”,
ImageLoaded.Entities.First<MeasurementImage>()), UriKind.Absolute));

#else
 updatedImage = new BitmapImage(new
Uri(String.Format(“http://fitnesstrackerplus.com/UploadedImages/{0}”,
finalFileName), UriKind.Absolute));

#endif
 // This is necessary to ensure that Silverlight
 // refreshes the image even though the file name
 // remains the same

 updatedImage.CreateOptions =
BitmapCreateOptions.IgnoreImageCache;
 CurrentImage.Source = updatedImage;
 }
 else
 CurrentImage.Source = new BitmapImage(new
Uri(“/Images/image_unavailable.png”, UriKind.Relative));
 }

 }, null);

 CurrentImage.Visibility = Visibility.Visible;
 }

534045c09.indd 381 3/13/10 4:50:31 PM

382 ❘ Chapter 9 Sharing Your SucceSS

 else
 CurrentImage.Visibility = Visibility.Collapsed;

 if (settings.enable_comments)
 {
 HtmlPage.Document.GetElementById(“comment_area”).
SetStyleAttribute(“display”, “”);
 HtmlPage.Document.GetElementById(“comment_editor”).
SetStyleAttribute(“display”, “”);

 LoadComments();

 CommentForm.Visibility = Visibility.Visible;
 }
 else
 {
 HtmlPage.Document.GetElementById(“comment_area”).
SetStyleAttribute(“display”, “none”);
 HtmlPage.Document.GetElementById(“comment_editor”).
SetStyleAttribute(“display”, “none”);

 CommentForm.Visibility = Visibility.Collapsed;
 }

 AboutText.Text = settings.about_text;
 }
}

Code snippet PublicJournal.xaml.cs

An additional aspect of this method that requires some special attention is the use of the HtmlPage
class to toggle the display of the comment_area, and comment_editor DIV elements. Earlier I said
that Silverlight offers easy access to the DOM of the page hosting the plug-in. The classes required
to make use of this functionality reside in the System.Windows.Browser namespace. The class that
offers access to the DOM is the HtmlPage class. In this class, you’ll find a host of useful methods
from the Silverlight code behind page that you can use to directly manipulate the DOM object. In
this case, you’ll first check that the commenting feature is enabled for this user’s public journal page.
If enabled, you need to make the DIV elements on the FitnessTrackerPlus.aspx page visible. In the
following code snippet, notice how both the comment_area and comment_editor DIV elements
are accessed and made visible using the GetElementById and SetStyleAttribute methods of the
Document instance.

After making both of these DIV elements visible, the next task is to load any comments that are
associated with this public journal and create individual DIV elements for each comment that is
retrieved from the database. In the following code take note that before actually creating any com-
ments, you need to clear the innerHTML property of the comment_area. This prevents duplicate
comments from appearing in the comment_area DIV when the comments are reloaded from the
database.

private void LoadComments()
{
 journalContext.Load<JournalComment>(journalContext.

534045c09.indd 382 3/13/10 4:50:31 PM

Solution ❘ 383

GetJournalCommentsQuery(settings.user_id), LoadBehavior.RefreshCurrent,
 (CommentsLoaded) =>
 {
 if (!CommentsLoaded.HasError)
 {
 HtmlPage.Document.GetElementById(“comment_area”).
SetProperty(“innerHTML”, “”);

 foreach (JournalComment comment in CommentsLoaded.Entities)
 CreateComment(comment);
 }

 }, null);
}

Code snippet PublicJournal.xaml.cs

Creating each individual DIV element for the comments once again requires the HtmlPage class.
The design calls for each comment to consist of three separate DIV elements—one for the header,
one for the comment text, and one for the footer. The header div is basically the name of the visitor
who posted the comment in the form of a hyperlink. The hyperlink opens up a new browser win-
dow to the website that was posted in the comment form. Because the website field was considered
optional, you must provide a non-functional link if the website field is empty. The next DIV element
contains the actual HTML that was posted to the database. When the HTML was posted as a secu-
rity precaution, you made use of the HttpUtility.Encode method to encode the raw HTML. You
also set the Editor control to disable the posting of JavaScript code, so you should be in good shape
there. You will, however, have to use the HttpUtility.Decode method before setting the content to
the comment_text DIV. The following code shows the full implementation of the CreateComment
method that appends each set of comment DIV elements to the main comment_area:

private void CreateComment(JournalComment comment)
{
 string headerText = “”;

 StringBuilder builder = new StringBuilder();

 if (String.IsNullOrEmpty(comment.website))
 headerText = String.Format(“Posted By: {0}”,
comment.name);
 else
 {
 if (comment.website.IndexOf(“http://”) >= 0)
 headerText = String.Format(“Posted By: <a href=’{0}’
target=’_blank’>{1}”, comment.website, comment.name);
 else
 headerText = String.Format(“Posted By: <a href=’http://{0}’
target=’_blank’>{1}”, comment.website, comment.name);
 }

 HtmlElement headerDiv = HtmlPage.Document.CreateElement(“div”);
 HtmlElement commentDiv = HtmlPage.Document.CreateElement(“div”);

534045c09.indd 383 3/13/10 4:50:31 PM

384 ❘ Chapter 9 Sharing Your SucceSS

 HtmlElement footerDiv = HtmlPage.Document.CreateElement(“div”);

 headerDiv.CssClass = “comment_header”;
 commentDiv.CssClass = “comment_text”;
 footerDiv.CssClass = “comment_footer”;

 headerDiv.SetProperty(“innerHTML”, headerText);
 commentDiv.SetProperty(“innerHTML”, HttpUtility.HtmlDecode(comment.comment));
 footerDiv.SetProperty(“innerHTML”, String.Format(“Posted on {0}”,
comment.entry_date.ToShortDateString()));

 HtmlElement comment_area = HtmlPage.Document.GetElementById(“comment_area”);

 comment_area.AppendChild(headerDiv);
 comment_area.AppendChild(commentDiv);
 comment_area.AppendChild(footerDiv);

 CommentArea.Width =
Convert.ToInt32(HtmlPage.Document.GetElementById(“comment_area”).
GetProperty(“offsetWidth”));
 CommentArea.Height =
Convert.ToInt32(HtmlPage.Document.GetElementById(“comment_area”).
GetProperty(“offsetHeight”));

}

Code snippet PublicJournal.xaml.cs

At the end of the method, notice how the Silverlight CommentArea Grid control has its own width
and height properties adjusted to match the total size of the comment_area DIV element. This is
achieved by retrieving both the offsetWidth and offsetHeight properties. You adjust the size of
the CommentArea Grid control because although the comment_area DIV element will grow with
each child that is appended to it, the Silverlight plug-in size will remain the same. Changes to the
size of DIV elements in the DOM do not automatically grow the size of the Silverlight page. This
works for a few comments but very quickly the comments flow right off the page and the visitor
cannot see them. Don’t forget that although the comments appear to be embedded in the Silverlight
page, they are really just overlaid on top of the plug-in and will not affect the size of the Silverlight page
itself. By growing the size of the CommentArea Grid along with the DIV element itself, you ensure
that the total size of the Silverlight page continues to grow and the parent ScrollViewer control
expands to include all of the available comments.

The final task for this chapter involves saving the HTML comments to the database. The comment
entry form requires visitors to supply at minimum a name and message. Visitors can also enter an
optional website if they wish. By making use of the AJAX-based Editor control, visitors can eas-
ily create HTML-based comments. When users click the Submit button, you will first create a new
JournalComment object and set both the name, website, user_id, and entry_date fields. You then
need to grab the HTML data from the Editor control.

To do this, you invoke some JavaScript on the main FitnessTrackerPlus.aspx page. The nice thing
about the Editor control is that you can access it through JavaScript using some of the client-side

534045c09.indd 384 3/13/10 4:50:31 PM

Solution ❘ 385

functions available in ASP.NET AJAX. Accessing standard ASP.NET controls from JavaScript was
always a chore and usually involved registering client script dynamically in the code behind using the
ClientID property of the server controls. From the start, the AJAX Control Toolkit controls were
developed with client-side programming in mind so rather that resort to server-side script injections
you can simply make use of the $find method to access any control from the Toolkit from JavaScript.
In this case, you need a couple of JavaScript methods on the main page, one that clears the Editor
control and another that retrieves the HTML that was entered in the control. The following code
should reside at the top of the FitnessTrackerPlus.aspx page:

<head runat=”server”>
 <title>FitnessTrackerPlus</title>
 <script language=”javascript” type=”text/javascript”>
 function setEditorContent(content) {
 $find(‘CommentEditor’).set_content(content);
 }
 function getEditorContent() {
 return $find(‘CommentEditor’).get_content();
 }
 </script>
</head>

Code snippet FitnessTrackerPlus.aspx

As you can see, the Editor control provides client-side methods called set and get_content that
you can use to access the raw HTML content of the control. Calling these methods from Silverlight
is as simple as making use of the HtmlPage.Window.Invoke method, which allows you to invoke
any JavaScript method that exists on the page hosting the Silverlight plug-in. In the following code
for the Submit handler, the getEditorContent method is called and the result is HTML encoded
using the HtmlEncode helper method before it’s sent to the database. Although the NoScript option
of the Editor control is set, the HTML encoding just adds an additional layer of security.

private void Submit_Click(object sender, RoutedEventArgs e)
{
 JournalComment comment = new JournalComment();

 comment.name = Name.Text;
 comment.website = Website.Text;

 comment.comment = HttpUtility.HtmlEncode(HtmlPage.Window.
Invoke(“getEditorContent”, null) as string);
 comment.user_id = settings.user_id;
 comment.entry_date = DateTime.Now;

 journalContext.JournalComments.Add(comment);
 journalContext.SubmitChanges((CommentSubmitted) =>
 {
 if (!CommentSubmitted.HasError)
 {
 LoadComments();

 Name.Text = “”;

534045c09.indd 385 3/13/10 4:50:32 PM

386 ❘ Chapter 9 Sharing Your SucceSS

 Website.Text = “”;
 HtmlPage.Window.Invoke(“setEditorContent”, “”);
 }

 }, null);
}

Code snippet PublicJournal.xaml.cs

summary

This chapter had a little bit of everything. You learned how to add some basic social networking
components to FitnessTrackerPlus by giving users a public version of their fitness journal. Thanks to
the navigation framework, users can share their public facing journal with others using a fixed URL
that leads directly to the public journal page. You also should have a good idea of how to integrate
HTML elements into your own Silverlight applications even though there is currently no native sup-
port for HTML. As you have seen, you can easily make use of this HTML overlay trick to utilize
some of the existing AJAX server-based controls from ASP.NET or other AJAX libraries. Don’t
forget that you’ll take a performance hit when you set the Windowless mode of the plug-in to true.
When integrating HTML into your own Silverlight applications, you must weigh the benefits of
HTML integration against the potential performance hit from Windowless mode.

Continuing with the social networking theme, the next chapter takes you through integrating with
the popular social networking site MySpace. By doing this, you’ll give your users an additional
choice for sharing fitness information. If they currently don’t belong to an existing social network
like MySpace, they can make use of the public journal feature you just created. Or if they prefer
to share their fitness data on a social networking site that they have already invested their time in,
you’ll give them the option to do that as well.

534045c09.indd 386 3/13/10 4:50:32 PM

Social Networking
Developing a MySpace Application with Silverlight

This chapter covers how to integrate data from FitnessTrackerPlus with the popular social
networking site MySpace. Users of FitnessTrackerPlus are currently able to share their fitness
progress with others through the use of the public journal page that you just completed. In
some cases, however, these users will already have made an investment in another social
networking site. These users may wish to just share their fitness journals on another existing
social networking site rather than sending their friends and family to yet another URL. There
are currently many different social networking sites available on the Internet and to try and
support every single one of them is not practical for this book. Instead, I will be focusing my
coverage on arguably one of the largest social networking sites — MySpace. Although this
chapter cannot possibly offer a thorough examination of the entire MySpace developer API
and the OpenSocial platform, you will be able to see step by step how to develop a MySpace
application in Silverlight, and by the end of the chapter provide users of FitnessTrackerPlus
with another option for sharing their fitness progress with their friends, family, and anyone
else on the Internet.

Problem

The public journal page created in the previous chapter provides a great tool for users of
FitnessTrackerPlus to gain feedback from others on their individual fitness progress. It provides
a social networking-like element to the site that really encourages users to share their food,
exercise, and measurement logs with others online. Of course, in this day and age, you can’t
assume that users will necessarily jump at the opportunity to keep yet another social network-
ing page up-to-date. For this subset of users, the public journal page is yet another link that
needs to be shared with friends and family if they want to keep up with what that particular
user is doing. These users most likely already have accounts and information shared on one
or all of the big social networking sites such as MySpace, Facebook, or Twitter. In order to

10

534045c10.indd 387 3/14/10 2:46:02 PM

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

388 ❘ ChaPter 10 Social NetworkiNg

make everyone happy, you should provide some kind of integration with these sites that allows users
to post information that would normally be shared on their public journal page to their social net-
working site of choice. Because MySpace, Facebook, and Twitter have such massive user bases, you
will want to concentrate on integrating with at least one of these three sites for the first version of
FitnessTrackerPlus.

When making a determination as to which social networking site you will support, you must take into
account a couple of things. First, you will need to decide on what your integration goals are. Most of
these social networking sites provide some sort of API that allows you as the developer to retrieve mem-
ber profile information, friend details, and additional items. In the case of FitnessTrackerPlus, you are
really just trying to mimic some of the behavior that is available in the public journal page so that users
of FitnessTrackerPlus will have an additional option for sharing their information. In this case, you may
not actually need information such as friends, videos, status, and so on. You really just want the food,
exercise, and measurement logs to be embedded into a profile page. This integration goal should nudge
you toward a site such as Facebook or MySpace as opposed to Twitter because you could potentially
have quite a bit of information to share and Twitter is limited to a certain number of characters.

Another thing to consider when making a social networking choice for this first version of Silverlight
is that, because you are working with Silverlight, the social networking site that you choose ideally
should have support for Silverlight as part of their standard API offering. It will be much easier to
integrate with a site that supports Silverlight because you won’t necessarily have to resort to all sorts
of JavaScript and HTML DOM Bridge tricks to get this working. That is not to say that these things
should be avoided, just that if you can find an API that wraps these operations into easier-to-use
managed code, your job will be infinitely easier.

Design

The “Design” section for this chapter covers from start to finish how to create a Silverlight applica-
tion that will be fully integrated with the social networking site MySpace. As stated in the “Problem”
section, one of the goals for this feature is to choose a social networking site that provides support
for Silverlight-based solutions in its standard API offering. MySpace has already announced and
made available a Silverlight SDK that makes integration with its OpenSocial platform a breeze. With
official Silverlight support in MySpace applications, it makes sense to go with MySpace for the initial
release of FitnessTrackerPlus.

myspace
At one time, MySpace was hands down the largest social networking site on the Web. It exploded onto
the scene before Facebook, Twitter, or any of the other major sites. MySpace became incredibly useful
for bands, which made use of the site to spread music clips, news, and tour dates. It essentially wiped out
the concept of individual band websites. MySpace continued to grow in popularity among the younger
Internet crowd, and soon it seemed as though everyone had a MySpace page to share. After a few years
at the top, MySpace had some growing pains, but being bought out for over 500 million dollars was not
one of them. One of the issues that MySpace had to quickly deal with was competing sites that were pop-
ping up fast. Of course, perhaps the largest competitor was Facebook, and over the course of just a few
years Facebook overtook MySpace as the leading social networking site.

534045c10.indd 388 3/14/10 2:46:02 PM

Design ❘ 389

With the rapid growth in popularity of Facebook, it became clear that MySpace had to reinvent
itself in order to win back crucial market share in the social networking space. Perhaps one of the
main reasons for Facebook’s tremendous growth was that it was one of the first social networking
sites to open up its entire platform to third-party developers. This single decision, not unlike one
made by Apple when it introduced iPhone application development, was responsible for the promi-
nent display of thousands of custom Facebook applications on members’ profile pages. Facebook
instantly attracted developers across the Web to join the site and create these custom applications.
A developer- and business-friendly terms of service for the API even offered a chance to potentially
generate revenue from some wildly popular applications. It did not take long, however, for MySpace
to jump on the bandwagon and create its own developer API so that third-party developers could
jump over to the “other” big social networking site and start developing custom applications.

MySpace has continued to evolve its developer platform by joining forces with the popular
OpenSocial platform that aims to create a standardized API that will work across multiple social
networking sites. Most recently, and most important as far as this book is concerned, MySpace
has added official support for Silverlight-based applications. These full-blown Silverlight apps can
be embedded directly into a member’s home page, or profile page. This official support includes
an excellent beta version of the MySpace Silverlight SDK. This new SDK wraps all of the required
JavaScript calls that are part of the OpenSocial platform and includes several Silverlight controls
that you can make use of to integrate data from MySpace with your own Silverlight application.

myspace silverlight sDK
Currently, the best solution available for writing a Silverlight-based MySpace application is to make
use of the MySpace Silverlight SDK. This SDK is currently in a beta form so you should be aware
that any references made to methods or controls in this book, although valid at the time of this writ-
ing, may change with each new release. The SDK is available out on the CodePlex site at http://
myspacesilverlight.codeplex.com. When you visit the site, you will see that the SDK itself pro-
vides several controls that can be dropped into your Silverlight XAML pages. Each of these controls
wraps existing functionality of the OpenSocial JavaScript platform. Rather than forcing you to mix
JavaScript along with your Silverlight code, the SDK controls make use of the HTML DOM Bridge
feature of Silverlight to provide asynchronous calls to the OpenSocial API. Table 10-1 lists the con-
trols that are available in the beta version that exists at the time of this writing.

table 10-1: MySpace Silverlight SDK Controls

Control DesCriPtion

MySpacePeopleRequest Loads detailed list of friends for either owner or viewer of the

application

MySpacePersonRequest Loads detailed profile information for the specified owner or viewer of

the application

MySpaceVideoRequest Loads profile videos for the specified owner or viewer of the

application

534045c10.indd 389 3/14/10 2:46:02 PM

390 ❘ ChaPter 10 Social NetworkiNg

Because this SDK is currently in a very early beta form, I will be focusing only on the control
that will be required for the FitnessTrackerPlus application. The control you will make use of
is the MySpacePersonRequest control, and it will provide you with an easy way to retrieve the
MySpace display name associated with the owner of the profile page that is currently hosting the
FitnessTrackerPlus application. The MySpacePersonRequest control provides access to just about all
of the available MySpace profile properties. The control uses an attribute called RequestFields in
order to give you the option of specifying exactly what data you want returned. These options can
easily be set by specifying the OpenSocial string representation of the properties you want returned.
If you leave the RequestFields attribute blank, then the control will, by default, attempt to load all
of the available properties. Table 10-2 shows the list of possible fields that can be returned with the
MySpacePersonRequest control.

table 10-2: MySpace OpenSocial Profile Properties

ProPerty requestFielDs string

AboutMe opensocial.Person.Field.ABOUT_ME

Age opensocial.Person.Field.AGE

BodyType opensocial.Person.Field.BODY_TYPE

Books opensocial.Person.Field.BOOKS

Children opensocial.Person.Field.CHILDREN

CurrentLocation opensocial.Person.Field.CURRENT_LOCATION

DateOfBirth opensocial.Person.Field.DATE_OF_BIRTH

Drinker opensocial.Person.Field.DRINKER

Ethnicity opensocial.Person.Field.ETHNICITY

Gender opensocial.Person.Field.GENDER

HasApp opensocial.Person.Field.HAS_APP

Heroes opensocial.Person.Field.HEROES

ID opensocial.Person.Field.ID

Interests opensocial.Person.Field.INTERESTS

Jobs opensocial.Person.Field.JOBS

LargeImage opensocial.Person.Field.LARGE_IMAGE

LookingFor opensocial.Person.Field.LOOKING_FOR

MediumImage opensocial.Person.Field.MEDIUM_IMAGE

Movies opensocial.Person.Field.MOVIES

534045c10.indd 390 3/14/10 2:46:02 PM

Design ❘ 391

ProPerty requestFielDs string

Music opensocial.Person.Field.MUSIC

Name opensocial.Person.Field.NAME

NetworkPresence opensocial.Person.Field.NETWORK_PRESENCE

Nickname opensocial.Person.Field.NICKNAME

ProfileSong opensocial.Person.Field.PROFILE_SONG

ProfileUrl opensocial.Person.Field.PROFILE_URL

ProfileVideo opensocial.Person.Field.PROFILE_VIDEO

RelationshipStatus opensocial.Person.Field.RELATIONSHIP_STATUS

Religion opensocial.Person.Field.RELIGION

SexualOrientation opensocial.Person.Field.SEXUAL_ORIENTATION

Smoker opensocial.Person.Field.SMOKER

Status opensocial.Person.Field.STATUS

ThumbnailImage opensocial.Person.Field.THUMBNAIL_URL

TVShows opensocial.Person.Field.TV_SHOWS

Urls opensocial.Person.Field.URLS

The MySpacePersonRequest also has an additional required attribute called IdSpec that is used to
determine which person’s profile data will be retrieved. The possible values for this attribute consist
of either the viewer or the owner of the application. I will be covering this concept in more detail
shortly, but for now you can take away from this that if you set the IdSpec attribute to the Viewer
option, then profile information for the person viewing the application will be loaded. Alternatively,
if you were to use the Owner value for the attribute, then profile information would be loaded for
the Owner of the profile page that is hosting the application. For example, if you were to visit a
page hosting the FitnessTrackerPlus MySpace application such as http://www.myspace.com/
fitnesstrackerplus, you would be considered the Viewer of the application, and the MySpace
user FitnessTrackerPlus would be considered the owner.

FitnesstrackerPlus — myspace application
The primary goal of adding a social networking component to FitnessTrackerPlus is to allow users
to share their food, exercise, and measurement log information. As you have seen, the implemen-
tation of the public journal page involves making use of read-only DataGrid controls in order to
display the information. Because the decision has been made to integrate with MySpace for this first
version of FitnessTrackerPlus, the next decision is what integration option you want to make use of.
In the previous section, I made reference to the new MySpace Silverlight SDK that is available for

534045c10.indd 391 3/14/10 2:46:02 PM

392 ❘ ChaPter 10 Social NetworkiNg

MySpace applications. Because this seems to offer the path of least resistance, you will most likely go
this route, but before making a final decision you should first see what other options are available.

By visiting the MySpace developer page at http://developer.myspace.com you will see links that
can take you to things such as Documentation, Debugging tools, news, and more. At this point, you
are interested in seeing what development options are available, so if you visit the Documentation
page, you are presented with three options, as shown in Figure 10-1.

Figure 10-1

Your integration options are:

MySpaceApps:➤➤ This is the solution you will most likely use for FitnessTrackerPlus and it
involves the creation of an application that is embedded directly onto a member’s home page
or profile page. There is also a separate canvas page that hosts only the application itself.
Figure 10-2 shows a sample sports application that has been added to the FitnessTrackerPlus
profile page. Yes, even FitnessTrackerPlus has its own MySpace page!

MySpaceID:➤➤ This provides your application with the ability to integrate MySpace data into
your own application. This application does not have to be hosted on MySpace and offers
you the ability to incorporate things such as Friend Updates, Profile Data, and much more.
For FitnessTrackerPlus, this really isn’t a good option as you aren’t really interested in dis-
playing MySpace data anywhere on the FitnessTrackerPlus site. Perhaps, down the road you
could think of some interesting uses for this, but as of now this option may not be what you
are looking for.

Post to MySpace: ➤➤ Perhaps the simplest to make use of, Post to MySpace is really nice for
quickly posting HTML data to a MySpace profile page. If FitnessTrackerPlus had been writ-
ten completely in ASP.NET, you would be able to make a very strong case for going with this
integration option.

534045c10.indd 392 3/14/10 2:46:02 PM

Design ❘ 393

Figure 10-2

534045c10.indd 393 3/14/10 2:46:02 PM

394 ❘ ChaPter 10 Social NetworkiNg

In order to make use of Post to MySpace, you first copy the following code and place it on your
ASPX page.

<form id=”myspacepostto” method=”post”
action=”http://www.myspace.com/index.cfm?fuseaction=postto”
target=”_blank”>
 <input type=”hidden” name=”t” value=”TITLE_GOES_HERE” />
 <input type=”hidden” name=”c” value=”CONTENT_GOES_HERE” />
 <input type=”hidden” name=”u” value=”URL_GOES_HERE” />
 <input type=”hidden” name=”r” value=”RETURN_URL_GOES_HERE” />
 <input type=”hidden” name=”l” value=”LOCATION_GOES_HERE” />
 <a href=”#”
onclick=”document.getElementById(‘myspacepostto’).submit();return false;”>
 <img src=”http://cms.myspacecdn.com/cms/post_myspace_icon.gif”
border=”0” alt=”Post To MySpace!” /> Share on MySpace!

</form>

Next, you just replace the value attributes with your application values. The <input> tag named c is
where you would put any HTML content that needs to be posted. In most cases, the previous code
would need to be dynamically created so you most likely create this entire code string along with
the HTML to post in the code behind file. For FitnessTrackerPlus, you could conceivably generate
HTML tables that contain all of the food, exercise, and measurement log entries and post them to
a MySpace profile page using this method. However, this method would require quite a bit of code,
and, because there is already a Silverlight SDK available for MySpace applications, it makes more
sense to stick with that route.

After taking a look at all of the options available for integration, it still makes the most sense to
integrate with MySpace by means of a full-blown Silverlight application. This way, you can leverage
some existing code and the XAML that you created for the public journal. Before getting started,
however, you should look at a quick list of requirements to be sure nothing is missed during the
implementation.

requirements
In order to mimic the behavior of the FitnessTrackerPlus public journal feature, the MySpace appli-
cation you build will need to accomplish several things. The following is a list of requirements that
should satisfy the main goal of allowing FitnessTrackerPlus users to share their fitness information
with others on their MySpace profile page.

Display food, exercise, and measurement log entries in ➤➤ DataGrid controls.

DataGrid➤➤ controls should be read only; visitors who see the embedded application should
not be allowed to modify entries.

The application should be visible from both the MySpace member home page and the ➤➤

profile page.

534045c10.indd 394 3/14/10 2:46:02 PM

Design ❘ 395

Before you will be able to populate the required DataGrid controls, you will need to solve an addi-
tional problem. Because the MySpace application is available to any member of MySpace, you won’t
necessarily have a link between the MySpace account and the corresponding FitnessTrackerPlus user
to retrieve log entries from.

All MySpace members must create a unique display name that MySpace uses as part of the direct
URL to the member’s profile page. For example, the MySpace page for FitnessTrackerPlus can be
found by entering the direct URL of http://www.myspace.com/FitnessTrackerPlus. In this
particular case, the display name would be FitnessTrackerPlus. In order to display the correct log
entries, you are going to need to provide a way for users of FitnessTrackerPlus to link their MySpace
display name with their FitnessTrackerPlus account. This way, when the MySpace application is
loaded, it should be able to make use of the MySpace API to get the current display name and per-
form a lookup against the FitnessTrackerPlus database to find out the correct FitnessTrackerPlus user
to load entries for.

As an example, let’s say there is a FitnessTrackerPlus user named Bill who has a MySpace account,
and the URL to his MySpace account is http://www.myspace.com/Bill. The MySpace display
name in this case would just be Bill. Now he decides to add the FitnessTrackerPlus application to his
profile page, but the application at this point has no idea whose profile page it is sitting on. Using
methods available in the MySpace API, the FitnessTrackerPlus MySpace application can find out that
it is running on Bill’s MySpace profile page and link it with his corresponding FitnessTrackerPlus
account, providing the application with the ability to load and display his food, exercise, and mea-
surement log entries.

That’s about it. There really isn’t much more that you need in this application at this point. In the
future, you may decide to add a bit more functionality that makes use of things such as Friend lists
and Status updates, but for right now these basic features are all you are looking for. With that said,
let’s get started designing the application itself.

User Interface

The user interface for the FitnessTrackerPlus MySpace application will be pretty simple. All it should
consist of is a StackPanel control that hosts DataGrid controls for the food, exercise, and measure-
ment log entries. Because you don’t really have much control over the overall size of the application
once it is hosted in a MySpace profile page, you should plan on wrapping all these controls in a
ScrollViewer just in case the DataGrid controls flow off of the main screen.

Database

You will need to make a few modifications to the existing profiles table in the database in order
to accommodate the new MySpace application. First, you must add a column that will be used to
determine if the user wishes to share his or her information in the MySpace app. Then you need an
additional column to hold the MySpace display name. Table 10-3 shows the updated profiles table.

534045c10.indd 395 3/14/10 2:46:02 PM

396 ❘ ChaPter 10 Social NetworkiNg

table 10-3: profiles

Column name tyPe DesCriPtion

id int Unique identity field for profile.

current_theme varchar(100) Preferred site theme.

about_text varchar(max) User description text to be displayed on public jour-

nal page.

share_journal bit Enable/Disable sharing of any information on public

journal page. Also enable/disable the ability to reach

the page with custom URL.

share_foods bit Enable/Disable sharing of food log entries.

share_exercises bit Enable/Disable sharing of exercise log entries.

share_measurements bit Enable/Disable sharing of measurement log entries.

share_images bit Enable/Disable sharing of measurement images.

enable_comments bit Enable/Disable posting and display of HTML

comments.

enable_myspace_sharing bit Enable/Disable sharing of fitness log data on

MySpace application.

myspace_name varchar(100) MySpace display name.

user_id int ID of associated user.

Data Access

In the data access layer you will make the necessary modifications to the Profile LINQ to SQL
classes to reflect the changes made to the profiles table. Typically, the easiest way to achieve this is to
simply delete the entity from the designer and then drag and drop a new copy back onto the screen.
Building the project at that point will regenerate new versions of the Profile entity class.

Business Logic

Several changes are required for the business logic layer. Because the additional fields in the
database are being added to the profiles table, you will need to modify the ProfileProvider,
AuthenticationService, and web.config in order to make sure that these new properties are
exposed through the existing ASP.NET Profile object. After completing those changes, you will need
to add a new method to the existing JournalService that will return the correct user ID for the
associated MySpace display name.

User Interface Code Behind

In the code behind, you must first retrieve the display name of the MySpace member whose profile
page is hosting the FitnessTrackerPlus application. Then you need to retrieve the FitnessTrackerPlus

534045c10.indd 396 3/14/10 2:46:02 PM

Solution ❘ 397

ID that has been linked to the MySpace account in order to then retrieve any food, exercise, or mea-
surement log entries for the current day. Finally, you bind the DataGrid controls to any entries that
have been loaded.

solution

The “Solution” section of this chapter guides you through the entire process of creating a MySpace
application using the MySpace Silverlight SDK. This application mimics the public journal feature
of FitnessTrackerPlus in that it displays food, exercise, and measurement log entries in DataGrid
controls. This application will be shown on both the member’s MySpace home page, as well as his
or her profile page.

getting started
The first step to creating the FitnessTrackerPlus MySpace application is to get set up with a devel-
oper account over at MySpace. Of course, it goes without saying that you will also need a standard
MySpace account as well.

Follow these steps:

 1. After registering for a developer account, you’re sent an e-mail containing a confirmation
link that you click to activate your new account. Once all of that is complete, you can get to
work. If you click the Build link from the main developer.myspace.com page, you are pre-
sented with two choices, as shown in Figure 10-3.

Figure 10-3

534045c10.indd 397 3/14/10 2:46:03 PM

398 ❘ ChaPter 10 Social NetworkiNg

 2. One option is to create a full-blown MySpace application and the other is to create a new
application that will make use of the MySpace ID platform. For FitnessTrackerPlus, you
choose the MySpace application option. After choosing the MySpace Apps option, you are
presented with a Create App page. As shown in Figure 10-4, you must enter some basic
information about the application, including a title for the application. You also must agree
to the terms of service.

Figure 10-4

 3. Once you complete this step, you will be presented with the application details page. For
this page, you are only concerned with the Edit App information and Edit App Source
tabs. Click the Edit App Information tab first, as you still need to enter some more detailed
information about your new application. Figure 10-5 shows the complete application
information page. At this point, the Common App Settings should be populated from the
previous step, so you should start with the App Category and Default Gallery Language; for
FitnessTrackerPlus the main language is English, and the best matching category I could find
was Sports.

534045c10.indd 398 3/14/10 2:46:03 PM

Solution ❘ 399

Figure 10-5

 4. It is important to fill out this page completely, as members of MySpace will use things such
as the category to find your application. Of course, there are thousands of applications
out there, so you will also have to rely on word of mouth to get people to find yours. In
Figure 10-5, there is a section called OAuth Settings and a field called OAuth Consumer Key.
This key is used for any calls that your application will make to the OpenSocial platform.

534045c10.indd 399 3/14/10 2:46:03 PM

400 ❘ ChaPter 10 Social NetworkiNg

This field is automatically populated when the page is loaded, so your key should already
be set by the time you arrive at this page. You also will want to make sure that in the Other
Settings section, the Preferred OpenSocial Version is set to 0.8. Silverlight-based solutions
require the use of OpenSocial 0.8 at the time of this writing.

 5. You need to move on to the Edit App Source tab. This is where you will be spending most
of your time during the development of the application. When the page first loads, you are
presented with three tabs for the Canvas, Profile, and Home surfaces. The Canvas page is
a separate MySpace page that hosts just your custom application. It is completely separate
from any Home or Profile pages and is usually used when members want to make use of the
application without actually adding it to their Home or Profile pages. It also happens to be a
great place to debug your application as it provides the most screen real estate when running.
The Home page is the first page that members see after logging into MySpace. You have the
option to present a completely different user interface for this page as more than likely you
will be severely limited in how much space is available. MySpace now allows for much more
customization of the Home page than before, so it’s possible users of the application will
have designated a little more room for you.

 6. On the final tab, you put the user interface to be displayed on the member’s Profile page. All
of the action takes place on the Profile page, and it is the page that best mimics what you were
trying to accomplish with the FitnessTrackerPlus public journal feature. It is a safe bet that this
is the tab you will want to concentrate on the most. In fact, you also have the option to disable
the Home page completely if you prefer and this prevents users from displaying the application
on their Home page. For now, however, let’s not restrict the usage of the application. Even
though there won’t be much screen space on the Home page, you should still provide members
with the option.

 7. By default, all three tabs show the HTML/JavaScript Source option as the default. For the
FitnessTrackerPlus application, this is the correct option so you should leave it as is. The
HTML/JavaScript Source box is where you place the actual declaration of the Silverlight
object, but for now, if you leave it blank and click the Save Application Source button your
custom application is officially built as far as MySpace is concerned.

 8. After saving the source, you can then click the Dev App button on any of the three tabs to see
a test of the application. Of course, because there is no source yet, all you will see is an empty
screen. Let’s do something about that now.

FitnesstrackerPlus myspace application
At this point you have everything you need to develop applications for MySpace. Now it’s time to
turn your focus to the FitnessTrackerPlus MySpace application that you will be developing. The
requirements are pretty simple as you are just trying to develop an app that will display a user’s
food, exercise, and measurement log entries. Before getting into any MySpace-specific code, you
will first need a working Silverlight application that retrieves these entries and displays them
in DataGrid controls. To start the development of the FitnessTrackerPlus MySpace application,
you will first need to add a new Silverlight application project to the current FitnessTrackerPlus

534045c10.indd 400 3/14/10 2:46:03 PM

Solution ❘ 401

solution. You can call this new Silverlight project FitnessTrackerPlus MySpace. Don’t forget to
enable WCF RIA Services support when you create the new project. Once the project is available,
it’s time to start creating the user interface.

User Interface

The user interface is pretty straightforward and you can borrow heavily from the work you did ear-
lier on when creating the public journal page. Because screen real estate is a premium in MySpace
applications and you won’t have total control over how much space on a profile page the member
gives your application, you need to leave the GlobalCalendar functionality out of this user inter-
face. Instead, you just declare read-only DataGrid controls in a StackPanel that will hold all the
food, exercise, and measurement log entries. Again, because you can’t completely control the space
you have on the profile page, your application must support scrolling so that viewers can see all
the data; for that reason, the main container for this application must be a ScrollViewer control.
Listing 10-1 shows the XAML required for the user interface.

listing 10-1: MainPage.xaml

<UserControl x:Class=”FitnessTrackerPlusMySpace.MainPage”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:data=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data”>
 <UserControl.Resources>
 <Style x:Key=”ReadOnlyDataGrid” TargetType=”data:DataGrid”>
 <Setter Property=”AutoGenerateColumns” Value=”False” />
 <Setter Property=”IsReadOnly” Value=”True” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”HorizontalScrollBarVisibility”
Value=”Auto” />
 <Setter Property=”CanUserResizeColumns” Value=”True” />
 <Setter Property=”SelectionMode” Value=”Single” />
 <Setter Property=”Visibility” Value=”Collapsed” />
 <Setter Property=”ColumnWidth” Value=”SizeToHeader” />
 </Style>
 </UserControl.Resources>
 <ScrollViewer>
 <StackPanel>
 <data:DataGrid x:Name=”FoodLogGrid” Style=”{StaticResource
ReadOnlyDataGrid}”>
 <data:DataGrid.Columns>
 <data:DataGridTemplateColumn Header=”Foods”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=Food.name}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Servings”

continues

534045c10.indd 401 3/14/10 2:46:03 PM

402 ❘ ChaPter 10 Social NetworkiNg

HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=servings}” Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Serving Size”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=Food.serving_size}” Style=”{StaticResource DataGridTextBlock}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
 </data:DataGrid>
 <data:DataGrid x:Name=”CardioLogGrid” Style=”{StaticResource
ReadOnlyDataGrid}”>
 <data:DataGrid.Columns>
 <data:DataGridTemplateColumn Header=”Cardio”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=Exercise.exercise_name}” Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Duration”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=duration, SpringFormat=’HH:mm:ss’)”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Distance”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=distance}” Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>

listing 10-1 (continued)

534045c10.indd 402 3/14/10 2:46:03 PM

Solution ❘ 403

 </data:DataGrid.Columns>
 </data:DataGrid>
 <data:DataGrid x:Name=”WeightTrainingLogGrid”
Style=”{StaticResource ReadOnlyDataGrid}”>
 <data:DataGrid.Columns>
 <data:DataGridTemplateColumn Header=”Weight Training”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=Exercise.exercise_name}” Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Reps”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=reps}”
Style=”{StaticResource DataGridTextBlock}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Weight”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=weight}” Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
 </data:DataGrid>
 <data:DataGrid x:Name=”ActivityLogGrid” Style=”{StaticResource
ReadOnlyDataGrid}”>
 <data:DataGrid.Columns>
 <data:DataGridTemplateColumn Header=”Activities”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=Exercise.exercise_name}” Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Duration”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=duration, StringFormat=’HH:mm:ss’)”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>

continues

534045c10.indd 403 3/14/10 2:46:03 PM

404 ❘ ChaPter 10 Social NetworkiNg

 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
 </data:DataGrid>
 <data:DataGrid x:Name=”MeasurementLogGrid”
Style=”{StaticResource ReadOnlyDataGrid}”>
 <data:DataGrid.Columns>
 <data:DataGridTemplateColumn Header=”Measurements”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=Measurement.measurement_name}” Style=”{StaticResource
DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Value”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding Path=value}”
Style=”{StaticResource DataGridTextBlockCentered}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn Header=”Unit”
HeaderStyle=”{StaticResource DataGridColumnHeaderCentered}”>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text=”{Binding
Path=MeasurementUnit.unit}” Style=”{StaticResource
DataGridTextBlock}” />
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 </data:DataGridTemplateColumn>
 </data:DataGrid.Columns>
 </data:DataGrid>
 <TextBlock x:Name=”DataNotShared” Text=”Data is not being
shared for this member” />
 </StackPanel>
 </ScrollViewer>
</UserControl>

After creating the user interface for the MySpace application, you then need to make some modifi-
cations to the existing public journal settings page. Don’t forget that you need to link the MySpace
display name with an existing account here at FitnessTrackerPlus in order to populate the DataGrid

listing 10-1 (continued)

534045c10.indd 404 3/14/10 2:46:03 PM

Solution ❘ 405

controls with the correct entries. The easiest way to achieve this is to add a field on the journal set-
tings page that lets the users enter their MySpace display name in order to link the two accounts. It
is also entirely possible that users won’t want any data to be shared on their MySpace account. To
account for that possibility, you should add another CheckBox control to enable/disable this feature
entirely. The MySpace application needs to perform a check first to see if the member has enabled
sharing to MySpace. If not, it must display the “Data not being shared” statement. The following
code shows the additional section required to support the MySpace sharing settings on the public
journal settings page.

<CheckBox x:Name=”EnableMySpace” Content=”Enable MySpace Sharing:”
IsChecked=”{Binding Path=EnableComments}” Style=”{StaticResource
JournalCheckBoxStyle}” />
<StackPanel Style=”{StaticResource AboutTextStackPanelStyle}”>
 <TextBlock Text=”MySpace Display Name:” Style=”{StaticResource
JournalSettingsTextStyle}” />
 <TextBox x:Name=”MySpaceName” Text=”{Binding Path=MySpaceName}”
Style=”{StaticResource MySpaceTextBoxStyle}” />
</StackPanel>

Code snippet JournalSettings.xaml

Database

As discussed earlier, you must add two additional columns to the existing
profiles table in order to support both the enabling/disabling of the MySpace
sharing feature, as well as the MySpace display name that links the two
accounts. Once again, you should make use of SQL Server Management
Studio to edit the table and add the required columns. Once this is com-
pleted, you should be left with the updated profiles table, as shown in the
database diagram depicted in Figure 10-6.

Data Access

The only work required in the data access layer is to update the Profile entity class to reflect the
new columns that have been added to the profiles table. The easiest way to do this is to just open up
the Users.dbml file and delete the Profile entity definition; then drag and drop the profiles table
back on to the designer and rebuild. Now the Profile entity will update to include the additional
properties. Figure 10-7 shows the updated Users.dbml file reflecting the changes.

Figure 10-6

534045c10.indd 405 3/14/10 2:46:03 PM

406 ❘ ChaPter 10 Social NetworkiNg

Figure 10-7

Business Logic

You need to perform several tasks when you implement the business logic. Although you can make
use of the existing Food, Exercise, and Measurement services in order to retrieve log entries, you
still need to make some modifications to the Profile, Authentication, and Journal service to
retrieve the MySpace application settings and, of course, link the MySpace display name with the
user’s FitnessTrackerPlus account. The first changes required are to the custom ProfileProvider
class and these start with the web.config file. Before making any modifications to the provider class,
you first need to let ASP.NET know about the additional fields that have been added to the profiles
table. The following code shows the modified profile section of the web.config file that adds sup-
port for these new fields.

<profile enabled=”true” automaticSaveEnabled=”false”
defaultProvider=”FitnessTrackerPlusProfileProvider”>
 <providers>
 <clear/>
 <add name=”FitnessTrackerPlusProfileProvider”
type=”FitnessTrackerPlus.Web.Providers.ProfileProvider”/>
 </providers>
 <properties>
 <add name=”CurrentTheme” type=”String”
customProviderData=”current_theme;varchar;100”/>
 <add name=”AboutText” type=”String”
customProviderData=”about_text;varchar;max”/>

534045c10.indd 406 3/14/10 2:46:03 PM

Solution ❘ 407

 <add name=”ShareJournal” type=”Bool”
customProviderData=”share_journal;bit”/>
 <add name=”ShareFoods” type=”Bool”
customProviderData=”share_foods;bit”/>
 <add name=”ShareExercises” type=”Bool”
customProviderData=”share_exercises;bit”/>
 <add name=”ShareMeasurements” type=”Bool”
customProviderData=”share_measurements;bit”/>
 <add name=”ShareImages” type=”Bool”
customProviderData=”share_images;bit”/>
 <add name=”EnableComments” type=”Bool”
customProviderData=”enable_comments;bit”/>
 <add name=”EnableMySpace” type=”Bool”
customProviderData=”enable_myspace_sharing;bit”/>
 <add name=”MySpaceName” type=”String”
customProviderData=”myspace_name;varchar;100”/>
 </properties>
</profile>

Code snippet web.config

After updating the web.config file, you must modify the GetPropertyValues and the SetPropertyValues
methods of the custom ProfileProvider class that you worked on earlier. The following code
shows the updated ProfileProvider methods that should be added to the ProfileProvider.cs file.

public override SettingsPropertyValueCollection
GetPropertyValues(SettingsContext context,
SettingsPropertyCollection collection)
{
 SettingsPropertyValueCollection valueCollection = new
SettingsPropertyValueCollection();

 try
 {
 Profile profile = GetProfile(context[“UserName”] as string);

 // If a profile was found then loop through all profile properties and
 // assign appropriate values

 if (profile != null)
 {
 foreach (SettingsProperty property in collection)
 {
 SettingsPropertyValue propertyValue = new
SettingsPropertyValue(property);

 switch (property.Name)
 {
 case “CurrentTheme”:
 {
 propertyValue.PropertyValue = profile.current_theme;
 break;
 }

534045c10.indd 407 3/14/10 2:46:04 PM

408 ❘ ChaPter 10 Social NetworkiNg

 case “AboutText”:
 {
 propertyValue.PropertyValue = profile.about_text;
 break;
 }
 case “ShareJournal”:
 {
 propertyValue.PropertyValue = profile.share_journal;
 break;
 }
 case “ShareFoods”:
 {
 propertyValue.PropertyValue = profile.share_foods;
 break;
 }
 case “ShareExercises”:
 {
 propertyValue.PropertyValue =
profile.share_exercises;
 break;
 }
 case “ShareMeasurements”:
 {
 propertyValue.PropertyValue =
profile.share_measurements;
 break;
 }
 case “ShareImages”:
 {
 propertyValue.PropertyValue = profile.share_images;
 break;
 }
 case “EnableComments”:
 {
 propertyValue.PropertyValue =
profile.enable_comments;
 break;
 }
 case “EnableMySpace”:
 {
 propertyValue.PropertyValue =
profile.enable_myspace_sharing;
 break;
 }
 case “MySpaceName”:
 {
 propertyValue.PropertyValue = profile.myspace_name;
 break;
 }
 }

 valueCollection.Add(propertyValue);
 }
 }

534045c10.indd 408 3/14/10 2:46:04 PM

Solution ❘ 409

 }
 catch (Exception)
 {
 }

 return valueCollection;
}

public override void SetPropertyValues(SettingsContext context,
SettingsPropertyValueCollection collection)
{
 SettingsPropertyValueCollection valueCollection = new
SettingsPropertyValueCollection();

 // Extract the username to retrieve property values for

 string userName = context[“UserName”] as string;

 // Get the profile for current user

 FitnessTrackerPlus.Web.Data.Profile dataProfile = (from p in
dataContext.Profiles where p.user_id == (from u in
dataContext.UserInformations where u.email_address == userName
select u.id).SingleOrDefault<int>() select p).SingleOrDefault();

 // If a profile was found then loop through all profile properties and
 // assign appropriate values

 if (dataProfile != null)
 {
 foreach (SettingsPropertyValue propertyValue in collection)
 {
 switch (propertyValue.Name)
 {
 case “CurrentTheme”:
 {
 dataProfile.current_theme =
propertyValue.PropertyValue.ToString();
 break;
 }
 case “AboutText”:
 {
 dataProfile.about_text =
PropertyValue.PropertyValue.ToString();
 break;
 }
 case “ShareJournal”:
 {
 dataProfile.share_journal =
Convert.ToBoolean(propertyValue.PropertyValue);
 break;
 }
 case “ShareFoods”:
 {

534045c10.indd 409 3/14/10 2:46:04 PM

410 ❘ ChaPter 10 Social NetworkiNg

 dataProfile.share_foods =
Convert.ToBoolean(propertyValue.PropertyValue);
 break;
 }
 case “ShareExercises”:
 {
 dataProfile.share_exercises =
Convert.ToBoolean(propertyValue.PropertyValue);
 break;
 }
 case “ShareMeasurements”:
 {
 dataProfile.share_measurements =
Convert.ToBoolean(propertyValue.PropertyValue);
 break;
 }
 case “ShareImages”:
 {
 dataProfile.share_images =
Convert.ToBoolean(propertyValue.PropertyValue);
 break;
 }
 case “EnableComments”:
 {
 dataProfile.enable_comments =
Convert.ToBoolean(propertyValue.PropertyValue);
 break;
 }
 case “EnableMySpace”:
 {
 dataProfile.enable_myspace_sharing =
Convert.ToBoolean(propertyValue.PropertyValue);
 break;
 }
 case “MySpaceName”:
 {
 dataProfile.myspace_name =
propertyValue.PropertyValue.ToString();
 break;
 }
 }
 }

 dataContext.SubmitChanges();
 }
}

Code snippet ProfileProvider.cs

In addition to the previous step, you must also ensure that these additional properties are exposed to
the client through WCF RIA Services. You need to add them as public properties to the User class in
the AuthenticationService. The following code shows the updated User class.

534045c10.indd 410 3/14/10 2:46:04 PM

Solution ❘ 411

public class User: UserBase
{
 // Profile properties that should be exposed as part of the User object

 public string CurrentTheme { get; set; }
 public string AboutText { get; set; }
 public string MySpaceName { get; set; }
 public bool ShareJournal { get; set; }
 public bool ShareFoods { get; set; }
 public bool ShareExercises { get; set; }
 public bool ShareMeasurements { get; set; }
 public bool ShareImages { get; set; }
 public bool EnableComments { get; set; }
 public bool EnableMySpace { get; set; }
}

Code snippet AuthenticationService.cs

Once you have completed all this, you still have to work out the business logic that will link the
MySpace display name with the correct FitnessTrackerPlus user. Now, there are a couple of things
to consider here. The client application will need to have a method where it can pass the MySpace
display name and be returned a corresponding user ID that can then be used to retrieve the correct
food, exercise, and measurement logs. This method should also return a valid ID only if the user
has agreed to share FitnessTrackerPlus data on his or her MySpace profile page. The most logical
place for such a method at this point is the JournalService as it already contains the necessary
logic to retrieve a user’s profile settings with just a username. Let’s add a new method to this ser-
vice that takes the MySpace display name and returns the corresponding user ID if sharing has
been enabled. The following code shows the new GetUserID method, which has been added to the
JournalService.

public int GetUserID(string display_name)
{
 UsersDataContext context = new UsersDataContext();
 Profile profile = context.Profiles.Where(e => e.myspace_name ==
 display_name).SingleOrDefault();

 if (profile != null)
 {
 if (profile.enable_myspace_sharing)
 return profile.user_id;
 }

 return -1;
}

Code snippet JournalService.cs

Now the user interface has a method that can retrieve the correct user_id and load the associated
food, exercise, and measurement log data.

534045c10.indd 411 3/14/10 2:46:04 PM

412 ❘ ChaPter 10 Social NetworkiNg

User Interface Code Behind

The fun really begins in the code behind for the MySpace application. First, however, you need to
take care of one preliminary: making a slight modification to the code behind for the public jour-
nal settings page. Remember that you added a few fields to the user interface; you want to ensure
that you update both the code to load the additional fields as well as the code to save any changes
to those settings. Loading the additional fields is already handled through the use of data binding,
so there is nothing to add there. Saving the fields, however, requires a couple of additional lines of
code. The following code shows the updates required to the SaveChanges_Click method, which
is responsible for ensuring that changes made to the MySpace display name and the enable/disable
sharing of data to MySpace option are persisted to the database.

private void SaveChanges_Click(object sender, RoutedEventArgs e)
{
 WebContext.Current.User.AboutText = AboutText.Text;
 WebContext.Current.User.ShareJournal = ShareJournal.IsChecked.Value;
 WebContext.Current.User.ShareFoods = ShareFoods.IsChecked.Value;
 WebContext.Current.User.ShareExercises = ShareExercises.IsChecked.Value;
 WebContext.Current.User.ShareMeasurements = ShareMeasurements.IsChecked.Value;
 WebContext.Current.User.ShareImages = ShareImages.IsChecked.Value;
 WebContext.Current.User.EnableComments = EnableComments.IsChecked.Value;
 WebContext.Current.User.EnableMySpace = EnableMySpace.IsChecked.Value;
 WebContext.Current.User.MySpaceName = MySpaceName.Text;

 WebContext.Current.Authentication.SaveUser((SettingsSaved) =>
 {
 if (!SettingsSaved.HasError)
 MessageBox.Show(“Your public journal settings have
been successfully updated”);

 }, null);
}

Code snippet JournalSettings.xaml.cs

After taking care of the public journal settings page, it’s time to move on to the MySpace application
code behind page itself. The first step is to grab the MySpace display name of the MySpace profile
page that is currently hosting the application. To do this, you make use of the MySpace Silverlight
SDK. The SDK wraps most of the required OpenSocial JavaScript functionality into a handful of
controls that can be declared in XAML and utilized in the code behind.

As you saw earlier in the “Design” section, there are controls that will assist you in retrieving Friend
information as well as information about a single member. When using this SDK, it is important
to understand that most of the MySpace OpenSocial calls will refer to either a viewer or an owner.
When you supply one of the SDK controls with the Viewer parameter, the code loads information
that is associated with the MySpace member that is actually viewing the application. When you
make use of the Owner parameter, you are requesting information that is only associated with the
owner of the profile page. This is an important distinction because in this application you are always
interested in the owner’s display name. You can’t be sure about who is visiting the MySpace pro-
file page and you really shouldn’t care. The only piece of information that is important here is the

534045c10.indd 412 3/14/10 2:46:04 PM

Solution ❘ 413

display name of the member whose profile page is hosting the FitnessTrackerPlus application. Once
you retrieve this, you can do a quick look up in the FitnessTrackerPlus database to figure out which
FitnessTrackerPlus user’s log data should be retrieved and displayed.

The control you need to add to retrieve the display name is the MySpacePersonRequest. In order to
make use of this or any of the controls, you first need to add a reference to the MySpaceSilverlightKit
.dll. After doing this, you update the namespace declaration in the XAML and add the control to the
UserControl.Resources section. The following code shows the control declaration along with the
required attribute values.

xmlns:myspace=”clr-namespace:MyOpenSpace;assembly=MySpaceSilverlightKit”

<UserControl.Resources>
 <myspace:MySpacePersonRequest x:Key=”PersonRequest”
IdSpec=”opensocial.IdSpec.PersonId.OWNER” />

Code snippet MainPage.xaml

In the previous code, the IdSpec determines which individual’s MySpace data to retrieve. Valid
values for this are taken directly from the OpenSocial specification and include opensocial.IdSpec
.PersonId.OWNER and opensocial.IdSpec.PersonId.VIEWER. As I said earlier, if you wanted to
retrieve MySpace data for the member that is viewing the application, you would use the opensocial
.IdSpec.PersonId.VIEWER value, but in this case you are only interested in the display name for
the owner of the profile page.

When you use the IdSpec value of OWNER, the MySpacePersonRequest will load all the available
information for the owner of the profile page using AJAX-based calls behind the scenes. A Person
property is available from the control and it implements INotifyPropertyChanged so that you
can easily listen for this event in the code behind to determine when the data has been completely
loaded. Now, you must also note that MySpace users always have the option to prevent third-party
applications from accessing their data, including the display name, which of course would render
the FitnessTrackerPlus application useless. If, for some reason, the user has blocked access to his
profile information, the Person property will be null and you won’t be able to go any further.
This is another reason that the “Data is not being shared . . .” message should be the default con-
trol that is visible. This way, if the owner has prevented access to their data on MySpace and the
PropertyChanged event is never fired, you will at least display a message to the visitor that makes
sense.

Assuming that the owner has set up MySpace sharing correctly, you should be able to access the
DisplayName property and call the GetUserID method of the JournalService. Don’t forget that
if the user has disabled access to his or her information from the public journal settings page, this
call returns a –1, and the “Data is not being shared . . .” message should once again be made vis-
ible. The following code shows the Loaded event handler where the PropertyChanged event of the
MySpacePersonRequest object is hooked up with its own event handler.

If the Person data is successfully loaded by the MySpace Silverlight SDK, then the Request_
PropertyChanged event is fired and the DisplayName property should then be available. Once
you have this, you can successfully populate the DataGrid controls with the data loaded from the

534045c10.indd 413 3/14/10 2:46:04 PM

414 ❘ ChaPter 10 Social NetworkiNg

GetMySpaceData method. Listing 10-2 shows the complete code behind for the FitnessTrackerPlus
MySpace application.

listing 10-2: MainPage.xaml.cs

using System;
using System.Linq;
using System.Windows;
using System.Windows.Controls;
using System.ComponentModel;
using MyOpenSpace;
using FitnessTrackerPlus.Web.Data;
using FitnessTrackerPlus.Web.Services;
using System.Windows.Ria;

namespace FitnessTrackerPlusMySpace
{
 public partial class MainPage : UserControl
 {
 private MySpacePersonRequest request = null;

 public MainPage()
 {
 InitializeComponent();

 Loaded += (s, e) =>
 {
 request = this.Resources[“PersonRequest”] as
MySpacePersonRequest;
 request.PropertyChanged += new
PropertyChangedEventHandler(Request_PropertyChanged);
 };
 }

 private void Request_PropertyChanged(object sender,
PropertyChangedEventArgs e)
 {
 string displayName = request.Person.DisplayName;

 JournalContext context = new JournalContext();
 FoodContext foods = new FoodContext();
 ExerciseContext exercises = new ExerciseContext();
 MeasurementContext measurements = new MeasurementContext();

 FoodLogGrid.Visibility = Visibility.Collapsed;
 CardioLogGrid.Visibility = Visibility.Collapsed;
 WeightTrainingLogGrid.Visibility = Visibility.Collapsed;
 ActivityLogGrid.Visibility = Visibility.Collapsed;
 MeasurementLogGrid.Visibility = Visibility.Collapsed;

 DataNotShared.Visibility = Visibility.Visible;

 context.GetUserID(displayName, (Callback) =>
 {

534045c10.indd 414 3/14/10 2:46:04 PM

Solution ❘ 415

 if (!Callback.HasError)
 {
 if (Callback.Value > 0)
 {
 DataNotShared.Visibility = Visibility.Collapsed;

 // Retrieve food log entries

 foods.Load<FoodLogEntry>(foods.
GetFoodLogEntriesQuery(Callback.Value, DateTime.Now, false),
LoadBehavior.RefreshCurrent, (Loaded) =>
 {
 if (!Loaded.HasError)
 {
 FoodLogGrid.ItemsSource = Loaded.Entities;
 FoodLogGrid.Visibility =
Visibility.Visible;
 }

 }, null);

 // Retrieve exercise log entries

 exercises.Load<ExerciseLogEntry>(exercises.
GetExerciseLogEntriesQuery(DateTime.Now, Callback.Value),
LoadBehavior.RefreshCurrent, (Loaded) =>
 {
 if (!Loaded.HasError)
 {
 CardioLogGrid.ItemsSource =
Loaded.Entities.Where(ev => ev.Exercise.exercise_type == 1);
 WeightTrainingLogGrid.ItemsSource =
Loaded.Entities.Where(ev => ev.Exercise.exercise_type == 2);
 ActivityLogGrid.ItemsSource =
Loaded.Entities.Where(ev => ev.Exercise.exercise_type == 3);

 CardioLogGrid.Visibility =
Visibility.Visible;
 WeightTrainingLogGrid.Visibility =
Visibility.Visible;
 ActivityLogGrid.Visibility =
Visibility.Visible;
 }

 }, null);

 // Retrieve measurement log entries

measurements.Load<MeasurementLogEntry>(measurements.
GetMeasurementLogEntriesQuery(Callback.Value,
DateTime.Now), (Loaded) =>
 {
 if (!Loaded.HasError)
 {

continues

534045c10.indd 415 3/14/10 2:46:04 PM

416 ❘ ChaPter 10 Social NetworkiNg

 MeasurementLogGrid.ItemsSource =
Loaded.Entities;
 MeasurementLogGrid.Visibility =
Visibility.Visible;
 }

 }, null);
 }
 }
 else
 {
 DataNotShared.Visibility = Visibility.Visible;
 DataNotShared.Text =
String.Format(“An error has occurred: {0}”, Callback.Error);
 }

 }, null);
 }
 }
}

Deploying the FitnessTrackerPlus MySpace Application

Once you have completed all the coding tasks, it’s time to look at deploying the new application to
MySpace and making it available to others. The first thing you do is enable the Silverlight applica-
tion for cross-domain callers. This allows OpenSocial to communicate correctly with the HTML
DOM Bridge wrappers that are part of the MySpace Silverlight SDK library. This requires that you
add the ExternalCallersFromCrossDomain tag to the current AppManifest.xml file. Listing 10-3
shows the updated file. This is a very important step; without this line your application will not run
correctly once it is deployed to MySpace.

listing 10-3: AppManifest.xml

<Deployment xmlns=”http://schemas.microsoft.com/client/2007/deployment”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
ExternalCallersFromCrossDomain=”ScriptableOnly”>
 <Deployment.Parts>
 </Deployment.Parts>
</Deployment>

After completing this last step you should rebuild your FitnessTrackerPlusMySpace project, log in
to the MySpace developer site, and click the My Apps link in order to configure your new applica-
tion. Remember earlier that you took the initial steps to create the application and you set up a
default canvas and profile page that was empty. For the FitnessTrackerPlus MySpace application,
you want to provide a user interface for the main application canvas page as well as the profile page.
For this release and because there is not typically much room on the HOME page, you leave the
HOME page user interface disabled. Starting with the canvas Surface tab, you simply need to add

listing 10-2 (continued)

534045c10.indd 416 3/14/10 2:46:04 PM

Solution ❘ 417

the Silverlight object tag with the full path to the FitnessTrackerPlusMySpace.xap file as the Source
property. Now that MySpace has full support for Silverlight-based solutions, you no longer need to
resort to IFrame tricks to display the plug-in. Instead, you can just place the Silverlight declaration
right in the HTML/JavaScript Source area. The following code should be copied to both the Canvas
Surface and Profile Surface tabs under the Edit App Source link.

<object data=”data:application/x-silverlight-2,” type=”application/x-silverlight-2”
width=”100%” height=”100%”>
 <param name=”source”
value=”http://www.fitnesstrackerplus.com/ClientBin/FitnessTrackerPlusMySpace.xap”/>
 <param name=”minRuntimeVersion” value=”4.0.41108.0” />
 <param name=”autoUpgrade” value=”true” />
 <param name=”windowless” value=”true” />
 <param name=”enablehtmlaccess” value=”true” />
 <param name=”allowhtmlpopupwindow” value=”true”/>
</object>
<iframe id=”_sl_historyFrame”
style=”visibility:hidden;height:0px;width:0px;border:0px”></iframe>

As you can see, there isn’t really anything different from any other Silverlight declaration. Don’t for-
get to add the same code to the Profile Surface tab as well. Once this is complete, there are a couple
of final steps you need to follow in order for the application to work:

 1. Add the application to your account. If you go back to the My Apps link, you will see an
entry for the FitnessTrackerPlus application. Click the link for the application and you are
presented with the option to add the application to your account, as shown in Figure 10-8.
Once you complete this step, you are presented with another dialog.

Figure 10-8

534045c10.indd 417 3/14/10 2:46:05 PM

418 ❘ ChaPter 10 Social NetworkiNg

 2. Set some basic settings such as where to place the application. Because you don’t have home
page support enabled, you can leave that option alone and instead make sure the “Add this
app to my profile” option is checked, as it is in Figure 10-9. You are taken to the canvas page
for the application.

Figure 10-9

 3. Instead of seeing a working application, you are presented with a blank
canvas. The reason for this is that the FitnessTrackerPlus application
still does not have permission to read the display name field. Go back to
the home page and click the manage apps link shown in Figure 10-10.
This link brings up another screen where you can load the permission
settings for the various applications installed.

 4. Find the Settings link for the FitnessTrackerPlus application and click it to load the permis-
sions dialog. As you can see in Figure 10-11, by default the application does not have access
to your personal info and details. You need to ensure that this option is checked so that the
application can access the display name property. Figure 10-11 also shows the permission
options that should ideally be set for the FitnessTrackerPlus application.

Figure 10-10

534045c10.indd 418 3/14/10 2:46:05 PM

Solution ❘ 419

Figure 10-11

Once you save these new settings and return to the canvas area of the app, you should see that the
food, exercise, and measurement logs are now being loaded. Figure 10-12 shows the application
fully enabled and working in the canvas area.

Figure 10-12

534045c10.indd 419 3/14/10 2:46:05 PM

420 ❘ ChaPter 10 Social NetworkiNg

The application should also now show up on the profile page as well. Figure 10-13 shows the
updated profile page with the FitnessTrackerPlus application running.

Figure 10-13

At this point, you have a working MySpace application. Obviously, there is room for improvement,
but at least now FitnessTrackerPlus users have the option of sharing their information on the public
journal page, their MySpace profile page, or even both. The official support for Silverlight applica-
tions on MySpace along with the MySpace Silverlight SDK really makes it easy for you to add a
social networking component into your own Silverlight application.

534045c10.indd 420 3/14/10 2:46:05 PM

Summary ❘ 421

summary

Even though this chapter showed you a step-by-step process for creating a Silverlight-based MySpace
application, I can’t stress enough that this doesn’t even begin to scratch the surface of what is available
through the combination of the MySpace Silverlight SDK and the OpenSocial API. You will, no doubt,
be able to come up with even more compelling features for both the FitnessTrackerPlus MySpace appli-
cation as well as your own Silverlight applications that can be used in conjunction with MySpace. It is
my expectation that, over time, the MySpace Silverlight SDK will make its way out of beta and continue
to add great new features.

At this point in the book, the FitnessTrackerPlus application can be considered complete. You have
provided users with the ability to keep track of foods, exercises, and measurements. You have also
added additional features such as the public journal and MySpace application. Before you package
everything up and release it to the world, it’s time to see if you can figure out a way to make some
money with this application. After all, hosting costs are not free, so even if you can find a way to
break even, you will be further ahead of the game than most startups.

534045c10.indd 421 3/14/10 2:46:05 PM

534045c10.indd 422 3/14/10 2:46:05 PM

This Site Doesn’t Run Itself

GeneratinG revenue for fitnesstrackerPlus

No doubt, some users will find the features included with FitnessTrackerPlus useful and engag-
ing. At this point in the project, you’ve put an awful lot of hard work into developing the site
and so far you have been paid nothing. Of course, as the site grows in popularity it would be
nice if you had some money left over to purchase that new LED TV you have been eyeballing
at the local Best Buy store. This chapter takes a look at some possible ways you can potentially
generate revenue — from both advertisements and monthly user subscriptions — to help offset
the hosting costs of the site.

Problem

You have just spent a considerable amount of time working on FitnessTrackerPlus and getting
it ready for its official public release. As much as you love coding, you can’t help but realize
that after you release the site you’ll still have costs and future time investments to keep the
site running. You may not love coding enough to keep doing it for free. As the owner and lead
developer of the site, you don’t really have anyone that you can just invoice for the cost of
your development time. Also, as the site grows in popularity, the costs of running and enhanc-
ing the site are only going to increase. In fact, to continue enhancing the site with compelling
features, you may even find it necessary to bring on additional help. Rest assured, it’s tough
to find another developer who can jump at the opportunity to work for free. That’s not to say
you couldn’t jump into the world of open source software and receive plenty of help, but your
original goal was to eventually generate some revenue from the site and potentially grow it
into a business.

11

534045c11.indd 423 3/13/10 4:49:30 PM

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

424 ❘ chaPter 11 This siTe Doesn’T Run iTself

In order for any of this to happen, however, you must come up with a way to generate revenue from
the site. After initial research you’ll conclude that there are really only a couple of viable revenue
models for websites and they include advertisements and recurring paid subscriptions. Your first pri-
ority is to consider the pros and cons of both these models and decide which of these to use. Because
there are many benefits to both these models, you may even want to consider ways of incorporating
both schemes to maximize your profits. Either way, it’s an important decision that will no doubt
affect the user base of FitnessTrackerPlus no matter which of the two options you choose.

DesiGn

In the “Design” and the following “Solution” sections, you will see how to incorporate pay-per-
click ads directly into the FitnessTrackerPlus Silverlight application. You’ll also see how to alterna-
tively charge a recurring monthly fee in order for users to join and continue making use of the site’s
features. After this is complete, you will then design and implement an alternative solution that
involves charging users a recurring monthly subscription fee.

advertising-based solutions
Currently, one of the most popular ways of generating revenue for a website is to add advertisements
to content pages. More often than not, these advertisements are of the pay-per-click variety, which
means that you are paid every time a user clicks one of the displayed advertisements. Pay-per-click
ads have been the primary revenue model for most major sites through the last few years. They are
usually pretty simple to incorporate into a site and often become a lucrative revenue stream. These
types of advertisements have become popular over the years because they are usually targeted spe-
cifically to the content displayed on the page. By targeting the ads to the content, the advertising
provider greatly increases the chance that the visitor will actually click the ad because advertise-
ments are most likely for a product that is relevant to the site or page. Although it is not impossible
to come up with your own system of pay-per-click advertisements for FitnessTrackerPlus, you’d be
better served by incorporating ads from one of the large pay-per-click ad providers already in exis-
tence. These providers specialize in targeted ads and their algorithms are sophisticated enough to
do a better job of displaying relevant ads than anything you’ll come up with in a short time frame.
After all, your business is to provide users with an online fitness tracking application and ideally
generate revenue from it — not to become a pay-per-click ad broker.

Google adsense
Although there are other competitors, the largest provider of pay-per-click ads is a little company
called Google whose AdSense advertising system can be used to display targeted pay-per-click
advertisements on FitnessTrackerPlus. An advantage that Google has over its competitors is a very
low barrier to entry — there are no minimum traffic requirements for a site to join. Some Google
competitors specifically target sites with extraordinarily high amounts of traffic and do not usually
allow a startup site to register for their advertising program.

534045c11.indd 424 3/13/10 4:49:30 PM

Design ❘ 425

The lack of a traffic requirement makes the AdSense program a great fit for a site like FitnessTrackerPlus,
especially when you’re starting out because you won’t have very high traffic until your site’s popu-
larity grows. Of course, the low barrier to entry does not change the fact that in order to truly make
any decent revenue from a pay-per-click, you must increase traffic to the site. Although the overall
click-through rate depends on how relevant the ads are, no matter how relevant they are, some users
just simply won’t click them. The pay-per-click ad system really becomes a numbers game in that
if you have only two percent of your users clicking ads, the only way to increase the revenue is to
increase the total number of users so that the two percent quickly translates into a much larger
number of clicks.

One thing that you must watch for with a pay-per-click advertising system — especially Google —
is resisting the temptation to influence the number of times your advertisements are clicked. The
terms of service make it obvious that you are not allowed to click your own ads — doing so almost
always results in a suspension of your account. After all, clicking your own ads will be effectively
cheating the advertisers who paid Google to display the ads. What may not be so obvious is that
you aren’t technically even able to suggest to users that they should click the ads to help fund their
continued use of the site. For example, on FitnessTrackerPlus you can’t say things like “Please click
the ads to help pay for new features.” Any violation of the Google AdSense terms of service will
more often than not result in a permanent suspension of your account, which would immediately
terminate your source of revenue and force you to use another advertising broker that may not be as
well equipped to serve targeted ads on FitnessTrackerPlus. These things are taken very seriously at
Google and if you make the mistake of violating the terms, it can be next to impossible to recover
your account.

It would seem that if you are going with an advertising-based solution to generate revenue, Google
AdSense is probably the way to go at this point. The question now is where are you going to place
the ads? This is always tricky because you want to place the ads in an area where users can see them
without annoying users who will ignore advertisements no matter what. In the very early design
stages of the FitnessTrackerPlus food, exercise, and measurement log pages, you used the DockPanel
control of the Silverlight Toolkit to place the GlobalCalendar control on the right-hand side of the
page in its own column. You may have noticed at this point that there was nothing underneath that
control. You can now use this area to place any advertising because the ad won’t interfere with the
operation of the site and it will still be very noticeable to those users who may be interested in the
displayed products. Figure 11-1 shows a sketch of an updated food log page that contains an adver-
tising area just below the GlobalCalendar control.

Because you want to maximize the potential revenue that can be generated from the displayed
ads, it’s wise to include the ads on pages other than just the food log as well. In fact, because
the GlobalCalendar is used on the food, exercise, and measurement log pages, you should
count on including advertisements on those pages in the same space that is available below the
GlobalCalendar control. By placing these pay-per-click ads in a prominent but unobtrusive
location, the hope is that you can generate a sufficient amount of revenue. If you should find, how-
ever, that this solution is not working out, you can potentially use another option. This solution
involves charging your users a nominal monthly fee to access the site.

534045c11.indd 425 3/13/10 4:49:30 PM

426 ❘ chaPter 11 This siTe Doesn’T Run iTself

Food Search

Food Log Entries

Custom Food

Global Calendar

Advertising
Banner

fiGure 11-1

recurring monthly fees
It is never an easy call to charge users for online content in this day and age, but sometimes it can
be an appropriate alternative to displaying advertisements. For the most part, people have become
accustomed to getting everything online for free and the only way users will be willing to pay is if
the perceived value of the site is far greater than any alternative free solution. When would it make
sense to charge money for FitnessTrackerPlus given that you have other free alternatives out there?
For starters, because this site is just starting out, you may quickly find that you have a very low
volume of traffic initially and that the pay-per-click system isn’t generating even enough revenue to
pay for the hosting costs of the site. That’s not to say that in the future the site won’t explode in pop-
ularity and that the problem won’t correct itself. If it does not, however, this is where the recurring
monthly payment solution may come into play and offer an alternative to relying on pay-per-click
advertisements as your only source of revenue.

There are a couple of important questions that you need to answer before you choose to collect
monthly fees for access to FitnessTrackerPlus:

How much you will be charging?➤➤

How will you go about collecting the money?➤➤

534045c11.indd 426 3/13/10 4:49:31 PM

Design ❘ 427

The first question is actually the most difficult one and entire books have been written on answer-
ing this particular question. The correct answer, of course, is you should charge the largest amount
of money your users are willing to pay. That sounds easy enough, right? On second thought, it’s a
Catch-22. How can you come up with a definitive answer to this? You probably can’t poll your users
for an answer as the majority will inevitably tell you that they would prefer to pay nothing. An alter-
native solution is to take a look at what your competitors are doing. For example, are any of them
charging for access to their sites? If so, you should be able to get a pretty good baseline. If none of
your competitors are charging for access to their sites then you’re on your own — but you should
be warned that your competitors may not be charging because users simply won’t pay any price
for access to this type of site. Nonetheless, it probably won’t hurt to try charging — the worst-case
scenario is that nobody joins at the price you select and you’ll need to continue to lower the price
until you see registration rates rise. If you get to a point where the ideal price is zero dollars, it may
be time to abandon the recurring monthly fee plan altogether and stick with the pay-per-click route.
For now, let’s plan on charging a recurring monthly fee of $5 per month and see what happens.

The answer to the second question is a little bit easier. When deciding on how you will be charging
your users and how you will be collecting the recurring monthly fee, you have several options. These
include collection and processing credit card information directly on the site or making use of a
third-party online payment broker.

In-House Credit Card Processing

One option that you have for collecting payments is to collect and store credit card information
right from the registration page of FitnessTrackerPlus. With all the recent news about stolen credit
card numbers and hackers finding their way into various databases, this solution is not for the faint
of heart. When you decide to process credit card transactions directly, you’re also making the deci-
sion to store this valuable personal information in your own database and opening yourself to all
sorts of legal liabilities. If you go this route, you’d better make sure that you have taken all the nec-
essary precautions to properly encrypt credit card data using SSL and ensure that your database is
properly locked down from potential intruders. Although you can collect this information directly
on your site, you still need to make use of a third-party payment gateway service to actually com-
plete the transaction. These services usually provide their own programming API and will handle
actually charging the users’ credit card and depositing the funds into your merchant account — for
a small fee, of course.

Despite some very large potential drawbacks, one big advantage to processing the credit card infor-
mation directly on the site is that the user registration process can stay fluid. Users can enter their
information right from your signup page and at all times stay connected to the FitnessTrackerPlus
site. As long as you are taking the necessary security precautions, this solution can add a more pro-
fessional feel to the site.

PayPal Subscriptions

Another potential solution for processing monthly subscription charges is to make use of PayPal’s
subscription feature. If you haven’t heard, PayPal is one of the largest online payment brokers in the

534045c11.indd 427 3/13/10 4:49:31 PM

428 ❘ chaPter 11 This siTe Doesn’T Run iTself

business. After being purchased by eBay, it became eBay’s preferred payment option and a house-
hold name. Using PayPal usually involves registering for an account and linking the account with a
personal or business bank account or credit card. As the seller, you use the PayPal site to generate
custom payment buttons that, when clicked, redirect users to an official PayPal site where they can
safely enter their credit card information or login to their own PayPal account in order to complete
the transaction.

In recent years PayPal has expanded its service to include:

Processing monthly recurring subscription charges➤➤ : This means that you can set up a monthly
subscription price and PayPal will automatically collect payments from your users every
month. When processing credit cards directly on your site, you not only have to take care
of the initial purchase but also must handle charging the credit card accounts on a monthly
basis. With the PayPal subscription feature, all this is taken care of for you.

Service cancellation:➤➤ When utilizing PayPal, you won’t have to worry about providing
users with the ability to cancel their membership as they will have full access to this func-
tion right from their own PayPal account page. If for some reason a user decides that
FitnessTrackerPlus just isn’t what they were looking for, they can easily cancel the member-
ship from PayPal’s main site and the PayPal developer API will inform you programmatically
of the cancellation.

Security:➤➤ Security is a large benefit of PayPal. PayPal becomes responsible for all security-
related aspects of credit card processing. They are on the hook for providing an SSL connec-
tion, storing encrypted card numbers, and taking on the legal liabilities.

Product familiarity:➤➤ PayPal has become somewhat of a household name and users who have
made online purchases in the past will most likely have used the service and feel safe continu-
ing to do so for your monthly subscription. This peace of mind may help you convince some
additional users to go ahead and make the purchase.

Which revenue solution is the right one?
Making a decision as to which revenue-generating solution is correct for FitnessTrackerPlus is a dif-
ficult one. Using the advertising-based system, you are opening the site up to anyone who is inter-
ested in a free online fitness tracker program. As long as this results in large volumes of traffic and
high click-through rates, you should be able to generate more than enough revenue to sustain the
site. However, if ads are not being clicked or you find that the target market for the site is smaller
than you originally expected, you could quickly find yourself in a situation where it costs more to
run the site than what you are receiving in AdSense payments.

The alternative to advertisements, charging a recurring monthly fee, also has its pros and cons. For
starters, a solution that includes a recurring monthly fee would mean that your business could sur-
vive or thrive with only a limited number of users who think highly enough of the site to pay you
5 dollars every month. You would not have to worry about click-through rates, or even necessarily
a high volume of traffic. You would, however, run the risk of limiting the popularity of the site as it

534045c11.indd 428 3/13/10 4:49:32 PM

Solution ❘ 429

can be extremely difficult convincing visitors who are not used to paying for websites to pony up the
money every month just to use yours. There is also the issue of competing websites that can easily
offer their own free advertising-supported version of an online fitness tracker.

For the purposes of this book and the sample application you’ll develop both an advertising-based
solution using Google AdSense as well as a paid monthly subscription version using PayPal. The
main reason for this is so that you can see how to incorporate both possible solutions into the
FitnessTrackerPlus sample application. In your own applications, it may very well make more sense
to choose one or the other. Alternatively, you can make use of a hybrid approach where you start off
the site free to all users, generating revenue through advertisements and then, after the site gains in
popularity, add some premium features for which some users may feel it is acceptable to pay. This
results in a site that combines advertisements and monthly subscription fees.

solution

This “Solution” section covers the development of two separate revenue-generating solutions for
FitnessTrackerPlus. First, you will see how to modify the application to display advertisements from
the Google AdSense program. Following this discussion, you will also see how to set up a recurring
monthly subscription system through PayPal. This alternate version of FitnessTrackerPlus will rely
on members paying a 5 dollar monthly fee in order to use the site.

Google adsense
The first revenue-generating solution that you should concentrate on is the pay-per-click advertising
system. In the “Design” section, the decision was made to make use of the Google AdSense program
to display ads on the food, exercise, and measurement log pages of FitnessTrackerPlus. Let’s take a
quick look at how to get enrolled in the AdSense program and then look at what code modifications
are required in order to incorporate the targeted ads into FitnessTrackerPlus.

Getting Started with AdSense

Getting started with Ad-Sense is a fairly painless process. First you visit the main Google AdSense
page at http://www.google.com/adsense. From there, you visit the link to the sign-up page. The
registration shown in Figure 11-2 is pretty straightforward and consists of the usual fields you would
expect to see a name, an address, such as N, A, and so on.

At this point, you enter the name of the site that will link to this AdSense account. As you can see
from Figure 11-2, FitnessTrackerPlus.com is linked to the account. An interesting feature of AdSense
is that during the initial registration step, you link an existing site with this particular AdSense account.
However, there is no limit to how many additional sites you can link to this account. This means
that if you choose to develop multiple sites, or even if you have an existing blog, you can add those
sites during a later step and have targeted ads displayed on those sites as well. Google will pay you
for ads clicked on any of your sites that have been linked with this AdSense account.

534045c11.indd 429 3/13/10 4:49:32 PM

430 ❘ chaPter 11 This siTe Doesn’T Run iTself

fiGure 11-2

After you have successfully registered for a new AdSense account, the next step is to create the
JavaScript responsible for displaying the targeted ads:

 1. Click the AdSense Setup tab and select the AdSense for Content selection to view advertising
layouts for websites.

534045c11.indd 430 3/13/10 4:49:32 PM

Solution ❘ 431

 2. You are presented with the choice to follow the AdSense for Content wizard or view all pos-
sible advertisement selections in a single page. I usually prefer the single-page route so that is
what I will be covering here. Set this option.

 3. Decide whether you want to display Ad units or Link units. Ad units are usually advertise-
ments in the form of a banner and have a variety of sizes available. These advertisements are
displayed either as text only or as image-based ads. Link units are simply a vertical list of
hyperlinks that, when clicked, lead the user to the website of the product being advertised.
Link units can offer a nice unobtrusive way to display advertisements on the site. Because
you have a pretty large banner area available on the FitnessTrackerPlus log pages, you might
as well go with the Ad units.

 4. Ad units come in a variety of shapes and sizes. Figures 11-3 and 11-4 show some of the
various text-based available ad formats. Figure 11-5 shows some of the similar image-based
formats.

fiGure 11-3

After looking at the various options, the best fit for FitnessTrackerPlus is probably the
160x600-wide skyscraper format. An advertisement this size will fit nicely in the area that
has been reserved under the GlobalCalendar control. Although most people go with the
text-based ads for FitnessTrackerPlus, you will be using image-based advertisements only.
The hope is that any advertisements that appear on FitnessTrackerPlus will be fitness-related
and because fitness is an image-based industry, showing image-based advertisements may
help increase the overall click-through rate.

534045c11.indd 431 3/13/10 4:49:33 PM

432 ❘ chaPter 11 This siTe Doesn’T Run iTself

fiGure 11-4

fiGure 11-5

 5. Once you have selected the appropriate ad format, you can then click the Submit and Get
Code button. This takes you to another screen that contains the JavaScript code required to
generate and display the advertisements. The following code shows the JavaScript generated
for the 160x600-wide skyscraper ad that will display on the log pages.

<script type=”text/javascript”>
 <!--
 google_ad_client = “YOUR ADSENSE ID GOES HERE”;

534045c11.indd 432 3/13/10 4:49:33 PM

Solution ❘ 433

 /* 160x600, created 10/10/09 */
 google_ad_slot = “THIS WILL BE DEPENDENT ON YOUR GOOGLE AD CLIENT ID”;
 google_ad_width = 160;
 google_ad_height = 600;
 //-->
</script>
<script type=”text/javascript”
src=”http://pagead2.googlesyndication.com/pagead/show_ads.js”>
</script>

One element of the generated code that differs for you is the google_ad_client field. This field
is specific and unique to every AdSense account, so yours will be different. Now that you have
the code required to display the ads, it’s time to figure out a way to incorporate them in the
FitnessTrackerPlus application. Let’s fire up Visual Studio and get started.

Displaying Advertisements in FitnessTrackerPlus

Getting the ads to display in FitnessTrackerPlus requires modifications in a few areas. If you recall
from the public journal feature, the trick for getting HTML comments to display on the public jour-
nal page is to add an absolutely positioned DIV element to the FitnessTrackerPlus.aspx page and then
to manipulate the position and visibility of it from the Silverlight code behind. You’ll make use of the
same technique to display the Google ads:

 1. Add a new DIV element called google_ads to the FitnessTrackerPlus.aspx page, as shown in
the following code.

<div id=”google_ads” style=”position:absolute;top:0px;left:0px;
display:none;”>
 <script type=”text/javascript”><!--
 google_ad_client = “YOUR GOOGLE AD CLIENT ID GOES HERE”;
 /* 160x600, created 10/10/09 */
 google_ad_slot = “THIS WILL BE DEPENDENT ON YOUR
GOOGLE AD CLIENT ID”;
 google_ad_width = 160;
 google_ad_height = 600;
 //-->
 </script>
 <script type=”text/javascript”
 src=”http://pagead2.googlesyndication.com/pagead/show_ads.js”>
 </script>
</div>

Code snippet FitnessTrackerPlus.aspx located in the FitnessTrackerPlus_AdSense project

 2. As discussed in the “Design” section, you want these advertisements to display on the food,
exercise, and measurement log pages. Let’s start with the food log page. In the following code,
a placeholder Grid control called AdArea is added just below the GlobalCalendar declaration.
The code behind makes sure that the google_ads DIV has its position updated so that it over-
lays this placeholder Grid control.

534045c11.indd 433 3/13/10 4:49:34 PM

434 ❘ chaPter 11 This siTe Doesn’T Run iTself

<StackPanel Style=”{StaticResource CalendarPanelStyle}”>
 <toolkit:GlobalCalendar x:Name=”Calendar” Style=”{StaticResource
CalendarStyle}”>
 <toolkit:GlobalCalendar.CalendarDayButtonStyleSelector>
 <fitnesstrackerplus_calendar:ValidFoodLogDateSelector>
<fitnesstrackerplus_calendar:ValidFoodLogDateSelector.
ValidLogDateStyle>
 <Style BasedOn=”{StaticResource
BasicDayButtonStyle}”
TargetType=”toolkit_primitives:GlobalCalendarDayButton”>
 <Setter Property=”Background”
Value=”#FF999999” />
 </Style>
 </fitnesstrackerplus_calendar:ValidFoodLogDateSelector.
ValidLogDateStyle>
 <fitnesstrackerplus_calendar:ValidFoodLogDateSelector.
InvalidLogDateStyle>
 <Style BasedOn=”{StaticResource BasicDayButtonStyle}”
TargetType=”toolkit_primitives:GlobalCalendarDayButton”>
 <Setter Property=”Background” Value=”#FFFFFFFF” />
 </Style>
 </fitnesstrackerplus_calendar:ValidFoodLogDateSelector.
InvalidLogDateStyle>
 </fitnesstrackerplus_calendar:ValidFoodLogDateSelector>
 </toolkit:GlobalCalendar.CalendarDayButtonStyleSelector>
 </toolkit:GlobalCalendar>
 <Grid x:Name=”AdArea” Style=”{StaticResource AdAreaStyle}” />
</StackPanel>

Code snippet FoodLog.xaml located in the FitnessTrackerPlus_AdSense project

 3. You need to make sure that the google_ads DIV element is visible when the user navigates
to the page and hidden again when the user leaves the page. The following code overrides
the OnNavigatedTo and OnNavigatedFrom methods making use of the HtmlPage object to
access the DIV element. Just like the public journal page implementation, the display style
property is toggled using the SetStyleAttribute method.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 LoadFoodLog();

 // Display any advertisements

 HtmlElement ads = HtmlPage.Document.GetElementById(“google_ads”);
 ads.SetStyleAttribute(“display”, “”);
}

protected override void OnNavigatedFrom(NavigationEventArgs e)
{
 base.OnNavigatedFrom(e);

534045c11.indd 434 3/13/10 4:49:34 PM

Solution ❘ 435

 // Hide any advertisements

 HtmlElement ads = HtmlPage.Document.GetElementById(“google_ads”);
 ads.SetStyleAttribute(“display”, “none”);
}

Code snippet FoodLog.xaml.cs located in the FitnessTrackerPlus_AdSense project

 4. Add a method that will take care of positioning the advertisement so that it overlays the
placeholder Grid control. The following code shows the PositionAds method that uses the
same technique you used previously to ensure that the HTML comments are positioned in
the correct location.

private void PositionAds()
{
 if (ActualHeight > 0 && ActualWidth > 0)
 {
 UIElement root = Application.Current.RootVisual as UIElement;
 GeneralTransform gt = AdArea.TransformToVisual(root);
 Point pos = gt.Transform(new Point(0, 0));

 HtmlElement ads = HtmlPage.Document.GetElementById(“google_ads”);

 ads.SetStyleAttribute(“top”, pos.Y.ToString() + “px”);
 ads.SetStyleAttribute(“left”, pos.X.ToString() + “px”);
 ads.SetStyleAttribute(“width”,
AdArea.ActualWidth.ToString() + “px”);
 ads.SetStyleAttribute(“height”,
AdArea.ActualHeight.ToString() + “px”);
 }
}

Code snippet FoodLog.xaml.cs located in the FitnessTrackerPlus_AdSense project

 5. Ensure that the advertisement is positioned correctly anytime the ScrollViewer control is
used. You do this by calling the PositionAds method anytime the LayoutUpdated event is
fired from the ScrollViewer. You can do this with the following line of code in the Loaded
event for the page.

Globals.MainScroll.LayoutUpdated += (se, ev) => { PositionAds(); };

Code snippet FoodLog.xaml.cs located in the FitnessTrackerPlus_AdSense project

 6. Because you are displaying a pretty long advertisement banner, you may want to make sure
that the DockPanel control has its MinHeight property set to something large enough to
guarantee that the entire advertisement is visible on the page; if the user has not added any
foods to the log yet, the advertisement will cut off the screen because it is an HTML DIV ele-
ment and not actually part of the Silverlight plug-in.

534045c11.indd 435 3/13/10 4:49:34 PM

436 ❘ chaPter 11 This siTe Doesn’T Run iTself

After completing all of these steps, you should be able to easily apply similar code to the exercise
and measurement log pages to ensure that the Google ads display when the user navigates to those
pages as well. At this point, running the application and navigating to the food log should show a
screen similar to Figure 11-6, although the advertisement you see will no doubt be different than the
one shown here.

fiGure 11-6

PayPal
Rather than trying to generate revenue through the use of pay-per-click advertisements, you may
decide that you would be better served simply charging a recurring monthly fee for users to gain access
to the site. As discussed in the design section, you do have the option of attempting to take care of
the credit-card processing completely on your own, but for FitnessTrackerPlus you’ll make use of the
developer API available from PayPal.

Currently, PayPal offers several different solutions for your site. The two most prominent are Website
Payments Standard and Website Payments Pro:

Website Payments Standard:➤➤ The basic offering from PayPal, this is the most simple to use
in your own solutions. The Standard offering typically involves logging into your PayPal
account and creating custom payment buttons depending on the product you are trying to
sell. Once the button is generated, you simply paste the code onto you web page — similar
to AdSense where you are making use of generated code. Once you’re finished, users will see
the PayPal payment logo and when they click the button they are redirected to a payment
processing page.

The Website Payments Pro➤➤ : This is much more sophisticated in that it provides a complete SDK
that you can use to directly integrate payment functionality into your site. This means that your
users never leave your site and are redirected to PayPal in order to process the payment.

For FitnessTrackerPlus, you’ll make use of the Standard offering for a couple of reasons.

534045c11.indd 436 3/13/10 4:49:35 PM

Solution ❘ 437

Standard version of the SDK has a much better cost associated with it. PayPal charges a monthly fee
for the Pro version and at the time of this writing, if you have less than $3,000 in sales per month
you must pay 30 dollars per month to access the Pro version of the SDK. When you start out, it
is highly unlikely that you’ll have more than 600 paying users joining the site. The Standard ver-
sion has no monthly fee. You do, however, pay a transaction fee, which varies depending on your
volume of sales. The fee is usually in the range of three percent or so and three percent of 5 dollars
isn’t bad considering PayPal takes on all the additional risk in storing and processing the credit card
information.

Getting Started with Website Payments Standard

To get started with PayPal, make sure that you have a verified account with PayPal already set up.
You may have already done so if you have spent any time on eBay in the last few years. If not, just
hop over to http://www.paypal.com and sign up for a new account.

When you create your account, consider changing it to a business account. There are no additional
costs associated with a PayPal business account, but if you’ll be selling monthly subscriptions, you
do gain some nice features that can help you manage the subscriptions better. Registering a business
account also helps give your site’s membership a professional feel. An added step is required if you
do make the decision to create a business account; you’ll need to perform account verification by
linking the account with a major credit card. Most personal PayPal accounts are linked to a check-
ing account, but when you switch to a business account you must provide a major credit card that
PayPal can use if it needs to issue refunds to your customers. Once you have successfully registered
for a business account, you can begin collecting payments and create a subscription button to dis-
play on your page.

Before doing that, however, make sure that your integration actually works without having to use
real money. Both Website Payments Standard and Website Payments Pro users can register for a
developer account as well as their primary account. The developer account gives you access to one
of the best features that PayPal offers — the Sandbox, which is a great tool for testing your site’s
integration with PayPal. The Sandbox is essentially a complete replication of the real PayPal site
with every transaction done with test data. No real money changes hands, but the functionality is
identical to the real PayPal site. This allows you to test out a variety of scenarios to see what works
and what doesn’t without requiring you to test the code with real money or real credit card infor-
mation. For the most part, if your solution is working in the Sandbox, you can count on it working
with the real site; the only change you have to make is to point your PayPal code from the Sandbox
URL to the real live URL.

To get started with the Sandbox, you should do the following:

 1. Visit the main Sandbox site at http://developer.paypal.com.

 2. Click the Signup button and fill out the required fields on the registration form.

 3. Check your e-mail for a verification link.

 4. Click the link to activate your new developer account.

 5. Log in to the Sandbox site where you are presented with the screen shown in Figure 11-7. From
here, you have access to several links to various testing tools, test accounts, and test e-mail.

534045c11.indd 437 3/13/10 4:49:35 PM

438 ❘ chaPter 11 This siTe Doesn’T Run iTself

fiGure 11-7

 6. Set up a couple of test accounts. The Sandbox allows you to create both a fictitious buyer
and seller account. Click on the Test Accounts link and you are presented with the page
shown in Figure 11-8.

 7. Click the Preconfigured link. The preconfigured option provides you with a quick and easy
way to create both the buyer and seller accounts that you will need.

fiGure 11-8

534045c11.indd 438 3/13/10 4:49:35 PM

Solution ❘ 439

 8. Fill out the appropriate account information. Figure 11-9 shows the completed form for the
test buyer account. Remember these are just test accounts, so the only fields you should be
concerned with are the Login Email and the Password fields. You will need to use both of
these in order to log in to the Sandbox with the newly created test accounts.

fiGure 11-9

 9. Repeat steps 6-8 to create a test account for the seller.

 10. Once you have successfully created both test accounts, you need to log in with the seller account
and create the FitnessTrackerPlus subscription button that you’ll use. You can access the seller
test account by selecting it on the Test Accounts screen and clicking the Enter Sandbox Test
Site button. You’re presented with a popup window containing what looks like a real version

534045c11.indd 439 3/13/10 4:49:35 PM

440 ❘ chaPter 11 This siTe Doesn’T Run iTself

of the PayPal site. As you can see in Figure 11-10, however, the site is clearly labeled with the
Sandbox version of the logo and the words Test Site should make it clear that this is not the
real PayPal site, although once you log in everything will work the same as the live version.

fiGure 11-10

 11. Log in using the password you generated when you created your test seller account. The
e-mail address field should already be filled in for you. You are presented with the typical
PayPal home page with all the dashboard information that you would see on the live site.

 12. To create the FitnessTrackerPlus subscription button, head on over to the Merchant Services
page. As you can see in Figure 11-11, there are many options to choose from on this page.

 13. To move forward, you should click the Subscribe link located under the Create Buttons menu.

534045c11.indd 440 3/13/10 4:49:35 PM

Solution ❘ 441

fiGure 11-11

The next page is divided into several categories. The first one deals with the actual sub-
scription button information. As you can see in Figure 11-12, you will need to enter a name
for the subscription as well as the price. As discussed previously, users who wish to join
FitnessTrackerPlus will need to pay 5 dollars per month

534045c11.indd 441 3/13/10 4:49:35 PM

442 ❘ chaPter 11 This siTe Doesn’T Run iTself

fiGure 11-12

 14. Save the changes to the newly configured button. In this case, you don’t have to worry about
any of the additional options so you can skip that step. PayPal stores a copy of the button
settings so you can easily retrieve them at a later time without going through the process of
recreating the button from scratch. Although not particularly useful for the simple button
you just created, these settings can come in handy if you were to set many of the optional
button settings and parameters. PayPal now presents you with the HTML code shown in
Figure 11-13.

534045c11.indd 442 3/13/10 4:49:35 PM

Solution ❘ 443

 15. Copy and paste this code into the FitnessTrackerPlus application to display the PayPal sub-
scription button. Because you have already integrated HTML-based comments in the public
journal feature, you shouldn’t have too much trouble introducing some additional HTML
elements into the solution.

fiGure 11-13

So, now that you have the code for the PayPal button, it’s time to take a look at how to properly
integrate it into the FitnessTrackerPlus application. As you will soon see, these test accounts and the
Sandbox environment are invaluable tools for debugging or testing the monthly subscription pay-
ments process.

Integrating PayPal Subscriptions with FitnessTrackerPlus

You currently have the PayPal subscription code that needs to be displayed — but in HTML for-
mat only. Just as you did for the public journal page, you add a new DIV element onto the main
FitnessTrackerPlus.aspx page that is responsible for hosting the subscription button. One thing to
watch for is closing the existing ASP.NET form tag before placing the DIV element. The code gener-
ated for the PayPal button includes its own <form> tag and if you were to simply drop it right below
the DIV element reserved for the comments, the PayPal code would not function correctly. Instead
of redirecting the user to a PayPal payment page, clicking the button just generates a standard ASP.
NET post back event, which is not what you want to happen here. By closing the existing <form>
tag before dropping in the button code, you can be sure that the PayPal code will work correctly.

534045c11.indd 443 3/13/10 4:49:36 PM

444 ❘ chaPter 11 This siTe Doesn’T Run iTself

Don’t forget that like the comment area, this new DIV element needs to have its display style
property set to none so that it won’t appear when the main page is first visible. Like the comment
area, you need to toggle the visibility of this button based on whether or not the Signup page is
visible. The following code shows a new DIV element called paypal_area being dropped onto the
FitnessTrackerPlus.aspx page after the main <form> tag is closed.

<div id=”comment_area”
style=”position:absolute;top:0px;left:0px;width:600px;display:none;”>
</div>
<div id=”comment_editor” style=”position:absolute;top:0px;left:0px;display:none;”>
 <asp:Editor runat=”server” ID=”CommentEditor” NoScript=”true” />
</div>
</form>
<div id=”paypal_area” style=”position:absolute;top:0px;left:0px;display:none”>
 <form name=”paypal_form”
action=”https://www.sandbox.paypal.com/cgi-bin/webscr” method=”post”>
 <input type=”hidden” name=”cmd” value=”_s-xclick” />
 <input type=”hidden” name=”hosted_button_id”
value=”YOUR BUTTON ID GOES HERE” />
 <input type=’hidden’ name=’custom’ value=”“ />
 <input type=”image”
src=”https://www.sandbox.paypal.com/en_US/i/btn/btn_subscribeCC_LG.gif” border=”0”
name=”submit” alt=”PayPal - The safer, easier way to pay online!” />
 <img alt=”“ border=”0”
src=”https://www.sandbox.paypal.com/en_US/i/scr/pixel.gif” width=”1” height=”1” />
 </form>
</div>

Code snippet FitnessTrackerPlus.aspx located in the FitnessTrackerPlus_PayPal project

Integrating PayPal with User Registration

With the button in place, it’s time to revisit the initial registration page and make some necessary
modifications to it in order to display the PayPal subscription button. Follow these steps:

 1. Add a placeholder Grid control that will be responsible for hosting the PayPal DIV element.
You can erase the existing button and replace it with the placeholder Grid.

 2. Change the text to let the visitors know that using the site now costs five dollars per month.
You don’t want them to be surprised when they click the subscribe button. Listing 11-1
shows the updated Signup page with the new placeholder Grid.

listinG 11-1: Signup.xaml

<navigation:Page x:Class=”FitnessTrackerPlus.Views.Signup”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:navigation=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation”
 xmlns:controls=”clr-namespace:FitnessTrackerPlus.Controls”
 xmlns:data=”clr-

534045c11.indd 444 3/13/10 4:49:36 PM

Solution ❘ 445

namespace:System.Windows.Controls;
assembly=System.Windows.Controls.Data.DataForm.Toolkit”
 Title=”FitnessTrackerPlus - Signup”>
 <navigation:Page.Resources>
 <Style x:Key=”SignupGridStyle” TargetType=”Grid”>
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 </Style>
 <Style x:Key=”UserRegistrationFormStyle” TargetType=”data:DataForm”>
 <Setter Property=”AutoGenerateFields” Value=”False” />
 <Setter Property=”AutoEdit” Value=”True” />
 <Setter Property=”CommandButtonsVisibility” Value=”None” />
 <Setter Property=”Header” Value=”Your just seconds
away from starting your journal, membership is only 5 dollars per month,
just fill out the form below to get started” />
 </Style>
 <Style x:Key=”RegisterButtonStyle” TargetType=”Grid”>
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 <Setter Property=”Margin” Value=”-10,20,0,0” />
 </Style>
 </navigation:Page.Resources>
 <Grid Style=”{StaticResource SignupGridStyle}”>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <data:DataForm x:Name=”UserRegistration”
Style=”{StaticResource UserRegistrationFormStyle}” Grid.Row=”0”>
 <data:DataForm.EditTemplate>
 <DataTemplate>
 <StackPanel>
 <data:DataField>
 <TextBox Text=”{Binding email_address,
Mode=TwoWay}” />
 </data:DataField>
 <data:DataField>
 <controls:PasswordControl
PasswordText=”{Binding password, Mode=TwoWay}”/>
 </data:DataField>
 <data:DataField>
 <TextBox Text=”{Binding security_question,
Mode=TwoWay}” />
 </data:DataField>
 <data:DataField>
 <TextBox Text=”{Binding security_answer,
Mode=TwoWay}” />
 </data:DataField>
 </StackPanel>
 </DataTemplate>
 </data:DataForm.EditTemplate>
 </data:DataForm>
 <Grid x:Name=”PayPalArea” Grid.Row=”1”
Style=”{StaticResource RegisterButtonStyle}” />
 </Grid>
</navigation:Page>

534045c11.indd 445 3/13/10 4:49:36 PM

446 ❘ chaPter 11 This siTe Doesn’T Run iTself

 3. Ensure that the HTML DIV element holding the image is visible when visitors arrive at the
signup page, and make sure that it is hidden when users navigate away from the page. In the
following code, the HtmlPage object again enables you to access the display property of the
DIV element and toggle it in the OnNavigatedTo and OnNavigatedFrom event handlers.

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 HtmlPage.Document.GetElementById(“paypal_area”).SetStyleAttribute
(“display”, “”);
}

protected override void OnNavigatedFrom(NavigationEventArgs e)
{
 base.OnNavigatedFrom(e);
 HtmlPage.Document.GetElementById(“paypal_area”).SetStyleAttribute
(“display”, “none”);
}

Code snippet Signup.xaml.cs located in the FitnessTrackerPlus_PayPal project

 4. Although the event handlers take care of displaying the new PayPal button on the signup
page, you still need to worry about the placement of the DIV. If you remember, when you
displayed the comment area on the public journal page, you still had to make sure that it was
positioned correctly. Once again, you need a method that ensures the PayPal DIV element
displays in the same location as the placeholder Grid control. You also need this method to
be called any time the page is scrolled. The following code shows a PositionButton method
that makes use of the same technique you used before by getting the relative location of the
Grid control and converting it into coordinates that can be used to absolutely position the
HTML DIV element.

private void PositionButton()
{
 if (ActualHeight > 0 && ActualWidth > 0)
 {
 UIElement root = Application.Current.RootVisual as UIElement;
 GeneralTransform gt = PayPalArea.TransformToVisual(root);
 Point pos = gt.Transform(new Point(0, 0));

 HtmlElement paypal =
HtmlPage.Document.GetElementById(“paypal_area”);

 paypal.SetStyleAttribute(“top”, pos.Y.ToString() + “px”);
 paypal.SetStyleAttribute(“left”, pos.X.ToString() + “px”);
 }
}

Code snippet Signup.xaml.cs located in the FitnessTrackerPlus_PayPal project

534045c11.indd 446 3/13/10 4:49:36 PM

Solution ❘ 447

 5. To make sure that the DIV position is updated any time the user scrolls the page, you simply
make sure that the PositionButton method is called any time the main ScrollViewer con-
trol’s LayoutUpdated event is fired.

Globals.MainScroll.LayoutUpdated += (se, ev) => { PositionButton(); };

Code snippet Signup.xaml.cs located in the FitnessTrackerPlus_PayPal project

This is looking good! So far the button will display and when clicked the visitor is redirected to the
PayPal payment site. Because the visitor will actually be leaving this site, this brings up an interest-
ing question. How do you send the user to PayPal and still collect the necessary registration fields
in order to create the new user account? Because the PayPal subscription button is an HTML-based
input element, there is no Silverlight-based event handler. Consequently, you aren’t even notified
when the visitor actually clicks the button and leaves the FitnessTrackerPlus site. Even if you were
notified, you don’t want to actually create the new account until you are sure you have been paid for
the membership. Let’s try and tackle these problems one at a time.

Validating Fields Before Processing Payment

First things first — you need to be notified somehow that the visitor is leaving the site in order to
make the payment. This is necessary because you must ensure that all the registration fields are vali-
dated before allowing the visitor to proceed to the payment page. If the validation fails, the visitor
must remain on the signup page so that they can see the displayed validation error messages.

To get this working, you make use of the HTML DOM Bridge feature available in Silverlight. You
have already seen how to access HTML elements from Silverlight code, but what you do now is
essentially the reverse of this process. Follow these steps:

 1. Call a method in the Signup page that performs the DataForm validation and lets the caller
know if it is okay to continue on with the form submission. To allow access to the Signup
page from JavaScript, you register the page object with the HTML DOM Bridge by calling
the RegisterScriptableObject method of the HtmlPage object. This should be done in the
constructor for the Signup page, as shown in the following code.

public Signup()
{
 InitializeComponent();

 UserRegistration.CurrentItem = newUser;
 Globals.MainScroll.LayoutUpdated += (se, ev) => { PositionButton(); };

 HtmlPage.RegisterScriptableObject(“Signup”, this);
}

Code snippet Signup.xaml.cs located in the FitnessTrackerPlus_PayPal project

534045c11.indd 447 3/13/10 4:49:36 PM

448 ❘ chaPter 11 This siTe Doesn’T Run iTself

 2. Add a method decorated with the ScriptableMember attribute. This method will be respon-
sible for performing the DataForm validation routine and will be called when the visitor
clicks the PayPal subscription button. For now, the following code will just return the result
of the ValidateItem method of the DataForm object.

[ScriptableMember]
public bool ValidateForm()
{
 return UserRegistration.ValidateItem();
}

Code snippet Signup.xaml.cs located in the FitnessTrackerPlus_PayPal project

 3. Modify the PayPal button code to add an onclick handler that will call the ValidateForm
method. In the following code, the Silverlight plug-in is accessible by calling getElementById
with the ID that was assigned to the plug-in. After that, any objects in the Silverlight client
that have been registered become available in the Content property. In this case, you access
the page with the name that you used in the RegisterScriptableObject call, which is
Signup. This gives you an instance of the page to work with and, of course, you can then
call the ValidateForm method. The HTML DOM Bridge takes care of the behind-the-scenes
work necessary to make all of this work.

<script language=”javascript” type=”text/javascript”>

 function validateSignup() {
 var silverlight = document.getElementById(“SilverlightControl”);

 if (silverlight.Content.Signup.ValidateForm())
 document.paypal_form.submit();
 else
 return false;
 }
</script>

<div id=”paypal_area” style=”position:absolute;top:0px;left:0px;
display:none”>
 <form name=”paypal_form”
action=”https://www.sandbox.paypal.com/cgi-bin/webscr” method=”post”>
 <input type=”hidden” name=”cmd” value=”_s-xclick” />
 <input type=”hidden” name=”hosted_button_id”
value=”YOUR BUTTON ID GOES HERE” />
 <input type=’hidden’ name=’custom’ value=”“ />
 <input onclick=”return validateSignup();” type=”image”
src=”https://www.sandbox.paypal.com/en_US/i/btn/btn_subscribeCC_LG.gif”
border=”0” name=”submit” alt=”PayPal - The safer,
easier way to pay online!” />
 <img alt=”“ border=”0”
src=”https://www.sandbox.paypal.com/en_US/i/scr/pixel.gif”

534045c11.indd 448 3/13/10 4:49:36 PM

Solution ❘ 449

width=”1” height=”1” />
 </form>
</div>

Code snippet FitnessTrackerPlus.aspx located in the FitnessTrackerPlus_PayPal project

Now you can be sure that the validation will occur before the visitor is redirected to the PayPal pay-
ment page but what about creating the new user account? You could create the account after per-
forming the validation but you would not be assured that the visitor actually completed the payment
process. In this case, the visitor would be redirected to PayPal, but before completing the payment
his or her FitnessTrackerPlus account would have already been created and the visitor could just go
back and log in rather than actually pay you. Obviously, this is not really a viable solution. Luckily,
PayPal offers a couple of features that you can use in order to be sure that have a user has actually
completed the payment process before you create a new account.

Auto Return

When you create a new PayPal account, you have the option to enable several features that come
in handy when you need to be notified of a completed payment. One of these features, called Auto
Return, allows you to provide a URL that PayPal will redirect users to upon completing their pay-
ment. In your case, this would send users back to FitnessTrackerPlus so that they can log in to the
site rather than being forced to find their way back to the main page.

By harnessing the power of the navigation framework, you can easily provide PayPal with a URL
that takes the user to a custom payment complete page embedded in the Silverlight application itself
rather than another ASP.NET page. This seems like a good place to potentially put the user account
creation code as well because you can be assured that the payment processing pages have been com-
pleted by the time they reach this Auto Return URL. To enable Auto Return, follow these steps:

 1. Log in to your PayPal Sandbox account and enter the seller test account site.

 2. Click the Profile link under the My Account tab. When the profile page loads, you are pre-
sented with another batch of links, as shown in Figure 11-14.

 3. Click the Website Payment Preferences link under the Selling Preferences column. The very
first option that you are presented with is the Auto Return feature.

 4. You need to both enable the feature and supply a return URL. In this case, plan on adding a
SignupComplete page to the project that will be accessible at http://www.FitnessTrackerPlus
.com/FitnessTrackerPlus.aspx#SignupComplete. Figure 11-15 shows the Auto Return
setup for FitnessTrackerPlus.

 5. There are some requirements that the Auto Return page has to meet. Basically, this involves
letting the user know that the payment process is complete and details of the transaction will
be e-mailed to the user. As you can see from Figure 11-15, PayPal gives an example of the
required text that is appropriate for the Auto Return page. For FitnessTrackerPlus, you will
use similar wording on the SignupComplete page.

534045c11.indd 449 3/13/10 4:49:37 PM

450 ❘ chaPter 11 This siTe Doesn’T Run iTself

fiGure 11-14

fiGure 11-15

534045c11.indd 450 3/13/10 4:49:37 PM

Solution ❘ 451

Payment Data Transfer

At this point, you have PayPal configured to return the user to a custom return page so you’ll know
when the payment process is completed. You should be able to create the user account when this
page is accessed, but there is just one small problem. You no longer have access to any of the user
registration field values from the signup page. How are you supposed to create a new account with-
out any of that information? Well, when PayPal redirects users back to the Auto Return page, it does
so with a query string that includes all the transaction details. This feature is called Payment Data
Transfer and can easily be enabled on the same Website Payment Preferences page. Figure 11-16
shows this option has been enabled for the Sandbox seller account.

fiGure 11-16

Included in these transaction details are any values that were placed in the hidden <input> tag
named custom on the original payment button. This means that if you can inject the values of the
user registration fields into the <input> tag before the form is submitted, these same values will be
accessible from the query string on the SignupComplete page. To access the <input> tag, you add
an id property. The following code shows the updated PayPal payment button code with the custom
<input> tag modified to include an id property of custom_paypal_field.

<div id=”paypal_area” style=”position:absolute;top:0px;left:0px;display:none”>
 <form name=”paypal_form”
action=”https://www.sandbox.paypal.com/cgi-bin/webscr” method=”post”>
 <input type=”hidden” name=”cmd” value=”_s-xclick” />
 <input type=”hidden” name=”hosted_button_id”
value=”YOUR BUTTON ID GOES HERE”/>
 <input id=”custom_paypal_field” type=’hidden’ name=’custom’ value=”“ />
 <input onclick=”return validateSignup();” type=”image”
src=”https://www.sandbox.paypal.com/en_US/i/btn/btn_subscribeCC_LG.gif” border=”0”
name=”submit” alt=”PayPal - The safer, easier way to pay online!” />
 <img alt=”“ border=”0”
src=”https://www.sandbox.paypal.com/en_US/i/scr/pixel.gif” width=”1” height=”1” />
 </form>
</div>

Code snippet FitnessTrackerPlus.aspx located in the FitnessTrackerPlus_PayPal project

To make sure that you receive the user registration values, you need to make sure they are injected
into this hidden <input> tag. Because the ValidateForm method is called when the button is

534045c11.indd 451 3/13/10 4:49:37 PM

452 ❘ chaPter 11 This siTe Doesn’T Run iTself

clicked, this makes for a great place to modify the value of the <input> tag. The following code
shows the updated version of the ValidateForm method modified to inject a comma-delimited
string of user registration values into the custom_paypal_field tag.

[ScriptableMember]
public bool ValidateForm()
{
 if (UserRegistration.ValidateItem())
 {
 HtmlElement custom_input =
HtmlPage.Document.GetElementById(“custom_paypal_field”);
custom_input.SetProperty(“value”, String.Format(“{0},{1},{2},{3}”,
newUser.email_address, newUser.password, newUser.security_question,
newUser.security_answer));

 return true;
 }
 else
 {
 MessageBox.Show(“Please ensure that you have filled
out all of the required fields correctly”,
“FitnessTrackerPlus Signup”, MessageBoxButton.OK);

 return false;
 }
}

Code snippet Signup.xaml.cs located in the FitnessTrackerPlus_PayPal project

After making this change, all the user registration variables are now accessible from the query
string when the user is redirected to the SignupComplete page. Speaking of which — now would
be a good time to create this page. You can go ahead and add a new Page to the Views folder called
SignupComplete. As discussed previously, the only requirement for this page is that you let the user
know that the payment has been completed and details of the payment will be e-mailed to his or
her account. Unfortunately, because of this requirement you will not be able to just automatically
log the user in and take her to the dashboard page as you had been doing. The user needs to be able
to read the required information before moving on. What you can do, however, is present users
with a login button that takes them to the dashboard. You won’t need for them to enter their e-mail
address and password information again because that information can be easily extracted from the
query string. Listing 11-2 shows the XAML code for the SignupComplete page.

listinG 11-2: SignupComplete.xaml

<navigation:Page x:Class=”FitnessTrackerPlus.Views.SignupComplete”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:mc=”http://schemas.openxmlformats.org/markup-compatibility/2006”

534045c11.indd 452 3/13/10 4:49:38 PM

Solution ❘ 453

 xmlns:navigation=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation”>
 <navigation:Page.Resources>
 <Style x:Key=”RegistrationCompleteStyle” TargetType=”TextBlock”>
 <Setter Property=”FontSize” Value=”16” />
 <Setter Property=”Margin” Value=”0,0,0,5” />
 <Setter Property=”TextAlignment” Value=”Center” />
 <Setter Property=”Visibility” Value=”Collapsed” />
 </Style>
 <Style x:Key=”LoginButtonStyle” TargetType=”Button”>
 <Setter Property=”Margin” Value=”0,0,0,5” />
 <Setter Property=”Visibility” Value=”Collapsed” />
 </Style>
 </navigation:Page.Resources>
 <StackPanel>
 <TextBlock Text=”Congratulations you have successfully joined
FitnessTrackerPlus, please click the Login button below to proceed to your
journal” Style=”{StaticResource RegistrationCompleteStyle}” />
 <TextBlock Text=”Your payment has been processed and details
will be sent to your email account shortly” Style=”{StaticResource
RegistrationCompleteStyle}” />
 <Button x:Name=”Login” Content=”Login Now” Style=”{StaticResource
LoginButtonStyle}” />
 <TextBlock x:Name=”FailureText” Text=”An error occurred while
creating your account, please contact support for further help.”
Style=”{StaticResource RegistrationCompleteStyle}” />
 </StackPanel>
</navigation:Page>

You may have noticed in Listing 11-2 that both the Login button and the FailureText TextBlock
controls have their Visibility property set to Collapsed. You only want the Login button to be
visible if the account creation operation completes without error; otherwise, you need to let the user
know that the account has not been created so the FailureText will be made visible instead. Either
way, you still need to display the text required by PayPal.

In the code behind for this page, before you create a new user account using the information in
the query string, you need to take a step back and ask yourself the following questions. How do I
know that this page request and the accompanying query string information actually came from
PayPal? And how do I know it came as a result of the user filling out the user registration form? You
can’t just trust that this is the case because nothing prevents hackers from discovering the URL to
the SignupPage and potentially creating new accounts using query string variables. As part of the
Payment Data Transfer mechanism, PayPal also requires you to validate the information it includes
in the query string. This involves posting the transaction ID and an additional field called an iden-
tity token back to PayPal so it can check to see if it is a valid transaction. The transaction ID is
available as one of the query string parameters, but the identity token is actually a hardcoded value
that PayPal generates for you when you enable the Payment Data Transfer feature, as shown previ-
ously in Figure 11-16.

534045c11.indd 453 3/13/10 4:49:38 PM

454 ❘ chaPter 11 This siTe Doesn’T Run iTself

You need to copy this value and store it as a private variable in the SignupComplete page, as shown
in the following code. Remember that your identity token will be different from the sample code so
you should always replace the PayPal values in the sample code with ones that you generate.

private readonly string identityToken =
“z7dJ4C-rCbvWQ9cJnjFCqGMmJ9nkclwWpHS3tgD_FgNTXR41uWLikF0Ds6S”;

Code snippet SignupComplete.xaml.cs located in the FitnessTrackerPlus_PayPal project

Validating the transaction with PayPal involves a simple HTTP POST operation, but even though it
might be tempting to just do this from the Silverlight client it won’t work. In fact, any attempt to do
so will just result in a SecurityException. This is due to the fact that PayPal does not implement
a cross-domain policy file, and Silverlight clients can only make calls outside of the main domain if
such a policy exists on the destination server. This doesn’t mean that the validation can’t be done;
it just means that you need to make the POST call from a web service hosted at FitnessTrackerPlus.
com. In this case, because this operation is related to creating a new user account, you can just add a
new method marked with the [Invoke] attribute in the UserInformationService class. Let’s call
this method ValidatePayPal, and the implementation of this method will simply make use of the
HttpWebRequest object to post the required validation string to PayPal. PayPal validates the request
by checking the string that is posted and if a valid transaction ID and identity token are specified,
PayPal sends back a “SUCCESS” message. The following code shows the ValidatePayPal method,
which has been added to the UserInformationService class.

[Invoke]
public bool ValidatePayPal(string validationString)
{
 HttpWebRequest request = HttpWebRequest.Create(validationString) as
HttpWebRequest;
 HttpWebResponse response = request.GetResponse() as HttpWebResponse;

 if (response.StatusCode == HttpStatusCode.OK)
 {
 Stream stream = response.GetResponseStream();

 StreamReader reader = new StreamReader(stream,
Encoding.GetEncoding(“UTF-8”));
 string result = reader.ReadLine();

 if (result == “SUCCESS”)
 return true;
 }

 return false;
}

Code snippet UserInformationService.cs located in the FitnessTrackerPlus_PayPal project

The implementation is pretty straightforward and easy to do from the ASP.NET backend. After
posting the string, you only need to read the first line of the response. If the message “SUCCESS” is
found, then you can be assured that the request is legit and the transaction information is valid.

The only thing left now is to actually parse the query string and validate the request using the
transaction ID and identity token. You should do this in the OnNavigatedTo event handler of the

534045c11.indd 454 3/13/10 4:49:38 PM

Solution ❘ 455

SignupComplete page. In the following code, the transaction IDs as well as all the user account
details are extracted from the query string, and the ValidatePayPal method is called using the
appropriate information. If the request is successfully validated, the user account is created. When
the account creation step is complete, the CreateUserCallback method is called and as long as no
errors occurred during this step the Log in button is displayed; otherwise, the failure message is
made visible.

private UserInformationContext context = new UserInformationContext();
private UserInformation newUser = new UserInformation();
private readonly string identityToken = “YOUR IDENTITY TOKEN GOES HERE”;

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 if (NavigationContext.QueryString.Count > 0)
 {
 // Custom user registration fields are in the cm query string variable

 string userData = NavigationContext.QueryString[“cm”];
 string[] values = userData.Split(‘,’);

 // Save the user information values

 newUser.email_address = values[0];
 newUser.password = values[1];
 newUser.security_question = values[2];
 newUser.security_answer = values[3];

 // Validate that the request came from PayPal and is valid
 // Transaction id is in the tx query string variable

 string validatePayPal =
String.Format(“https://www.sandbox.paypal.com/cgi-bin/webscr?tx={0}&
at={1}&cmd=_notify-synch”, NavigationContext.QueryString[“tx”], identityToken);

 context.ValidatePayPal(validatePayPal, (ValidateComplete) =>
 {
 if (!ValidateComplete.HasError)
 {
 if (ValidateComplete.Value)
 {
 context.CreateUser(newUser.email_address,
newUser.password, newUser.email_address, newUser.security_question,
newUser.security_answer, CreateUserCallback, newUser);
 }
 else
 {
 FailureText.Visibility = Visibility.Visible;
 Login.Visibility = Visibility.Collapsed;
 }
 }
 else
 {
 FailureText.Visibility = Visibility.Visible;
 Login.Visibility = Visibility.Collapsed;

534045c11.indd 455 3/13/10 4:49:38 PM

456 ❘ chaPter 11 This siTe Doesn’T Run iTself

 }

 }, null);
 }
}

private void CreateUserCallback(InvokeOperation<UserInformation> result)
{
 if (!result.HasError)
 {
 FailureText.Visibility = Visibility.Collapsed;
 Login.Visibility = Visibility.Visible;
 }
 else
 {
 FailureText.Visibility = Visibility.Visible;
 Login.Visibility = Visibility.Collapsed;
 }
}

Code snippet SignupComplete.xaml.cs located in the FitnessTrackerPlus_PayPal project

The final step required in this process is to handle the Login Click event and automatically log the
user into the site. Remember earlier on you made modifications to the MainPage code behind to lis-
ten for a SignupComplete event. You now need to move the SignupComplete event code from the
original Signup page into the SignupComplete page. After doing this, you will need to fire the event
when the Log in button is clicked. In the following code, this is handled in the Loaded event of the
SignupComplete class.

public SignupComplete()
{
 InitializeComponent();

 Loaded += (s, e) =>
 {
 Login.Click += (se, ev) =>
 {
 if (SignupCompleted != null)
 SignupCompleted(this, new SignupEventArgs(newUser));
 };
 };
}

Code snippet SignupComplete.xaml.cs located in the FitnessTrackerPlus_PayPal project

Finally, you need to modify the MainSiteFrame_Navigated event handler to cast the
NavigationEventArgs variable to an instance of the SignupComplete class as opposed to the
Signup page class. The following code shows this final modification.

private void MainSiteFrame_Navigated(object sender, NavigationEventArgs e)
{
 if (e.Uri.OriginalString.Contains(“SignupComplete”))
 {
 FitnessTrackerPlus.Views.SignupComplete signupComplete = e.Content as

534045c11.indd 456 3/13/10 4:49:38 PM

Solution ❘ 457

FitnessTrackerPlus.Views.SignupComplete;

 signupComplete.SignupCompleted += (s, ev) =>
 {
 WebContext.Current.Authentication.Login(new
LoginParameters(ev.NewUser.email_address, ev.NewUser.password),
 (LoginCompleteCallback) =>
 {
 GetUserInformation();

 }, null);
 };
 }
}

Code snippet MainPage.xaml.cs located in the FitnessTrackerPlus_PayPal project

Once you have put all this together, you should be able to run the application and create a new user
using the PayPal Sandbox accounts. To really test this, you have to deploy the solution to a live server
because the PayPal Auto Return and Payment Data Transfer features will not work against the local
Visual Studio web server. Although coverage of the FitnessTrackerPlus deployment is reserved for the
next chapter, let’s pretend you have already deployed it and walk through the user registration process.

 1. Navigate to the new Signup page displayed in Figure 11-17. Notice the new PayPal subscrip-
tion button is being displayed.

 2. Test the validation by skipping a couple of the required fields and clicking the Subscribe but-
ton. Instead of being redirected to the PayPal payment page, the submission is cancelled and
you are instead left with validation errors like the ones shown in Figure 11-18.

fiGure 11-17

534045c11.indd 457 3/13/10 4:49:39 PM

458 ❘ chaPter 11 This siTe Doesn’T Run iTself

fiGure 11-18

 3. Enter information into all required fields and click the PayPal button. You are redirected to
the PayPal payment page shown in Figure 11-19.

 4. Log in to the PayPal Sandbox account using the buyer test account you created earlier. Before
doing this, however, make sure that you have logged into the Sandbox site using your main
Sandbox login; otherwise, the test buyer and seller account logins become unavailable. These
logins are only active when you have already logged into the Sandbox site using your main
credentials. You are then presented with the payment review page shown in Figure 11-20.

 5. Click the Pay button. You are then redirected back to the FitnessTrackerPlus
SignupComplete page and presented with the SignupComplete page shown in Figure 11-21.

 6. Click the Login button. You’re taken to the dashboard page.

534045c11.indd 458 3/13/10 4:49:39 PM

Solution ❘ 459

fiGure 11-19

fiGure 11-20

534045c11.indd 459 3/13/10 4:49:39 PM

460 ❘ chaPter 11 This siTe Doesn’T Run iTself

fiGure 11-21

Canceling Subscriptions

The previous section covered both the Auto Return and Payment Data Transfer features of PayPal.
These allow you to collect payment details through the query string on your return page. You can
then easily utilize this information to create a new account subscription. But what if your users
decide they simply don’t want to pay for the use of the site anymore?

PayPal does provide subscription cancellation notifications; however, these notifications are not
available through Auto Return and Payment Data Transfer. Instead, you must make use of another
PayPal mechanism called Instant Payment Notification or IPN for short. Although I won’t be cover-
ing IPN here, you can visit the PayPal developer site for more information on how it works as well
as how to create an implementation that utilizes it. In a nutshell, this involves creating another ASP.
NET page that PayPal can call at anytime with payment details or cancellation notices. The code
is very similar to the code in the SignupComplete page, and you still have to send a validation
string back to PayPal to check the validity of the request. If you were to handle cancellations for
FitnessTrackerPlus, you would listen for these cancellation messages and then simply make the user
account inactive whenever users cancel their memberships.

534045c11.indd 460 3/13/10 4:49:39 PM

Summary ❘ 461

summary

This chapter has provided you with a couple of potential revenue-generating solutions for not only
FitnessTrackerPlus but hopefully your own Silverlight applications. You have seen how easy it can be
to take advantage of a pay-per-click advertising solution such as Google AdSense in order to quickly
and easily generate revenue. Alternatively, you have seen how to integrate with PayPal in order to
charge users a recurring monthly subscription fee. You may very well decide in your own applica-
tions that a hybrid of these two systems is the best way to go. You could potentially offer a free ver-
sion of the site that is supported by pay-per-click advertisements as well as a premium version with
additional features and enhancements that require users to pay a monthly premium membership
fee. Either way, I think you will find that just because you are developing a Silverlight application,
it is not terribly difficult to incorporate either Google AdSense or PayPal subscriptions into your
solution.

At this point in the book, you have a fully functioning fitness tracking application, a public journal
feature that helps your users share their progress, social networking integration with MySpace,
and a couple of potential revenue-generating solutions using Google AdSense and PayPal recurring
subscriptions. All that is left is some cleanup work and to find a place to host this thing. The final
chapter focuses on tidying up the application for the real world, choosing a hosting provider, and
deploying the finished application to the web.

534045c11.indd 461 3/13/10 4:49:39 PM

534045c11.indd 462 3/13/10 4:49:39 PM

Let’s Go Live
Finishing and Deploying FitnessTrackerPlus

In this final chapter, you will see that although the application has been fully developed there
is still some work left to do before declaring to the world that FitnessTrackerPlus is available
and ready to go. This chapter begins with finalizing the application by adding content to the
supplemental pages. Next you will see the importance of creating terms of service and privacy
policy pages before you actually deploy the site. Finally, I will cover in detail how to build
and deploy the site to the popular shared hosting provider Discount ASP.NET. It’s been a long
journey to get to this point and as tempting as it may be to just upload the site as is and start
signing up users, you really need to take a small step back and tie up all the loose ends and get
any potential legal issues out of the way before opening up the site to the rest of the world.

Problem

You’ve completed all the required features for the site. You have working food, exercise, and
measurement log pages. You have a public journal feature that allows users to share their success
with others. You have successfully integrated with the popular social networking site MySpace,
and you have even come up with a pretty good scheme to generate revenue once your site becomes
popular. What else could possibly hold up the public launch of FitnessTrackerPlus? Well for start-
ers you still have a bunch of empty supplemental pages. Way back when the project was started,
you created some basic placeholder controls for things such as Contact, Terms of Service, Privacy
Policy, and About pages. Now it’s time to really take a look at adding some content and function-
ality to these pages so that the site looks polished, professional, and most important, completed.

In a perfect world, people would sign up for a FitnessTrackerPlus account and make use of the
site without ever having problems. In the real world, that simply will never happen and you are
going to need to provide a means for users to send you feedback. Every major site has a contact
page that enables users to quickly send any questions or concerns to the site administrator,

12

534045c12.indd 463 3/14/10 2:48:57 PM

Boykma
Text Box
Download from Wow! eBook <www.wowebook.com>

464 ❘ ChaPter 12 Let’s Go Live

which of course in this case is you. A working contact page will be one major requirement for the
site before any deployment begins.

Another commonly overlooked problem that you will need to solve as a developer, unfortunately, is
never very exciting—legality. In the early days of the Web, it was common for developers to launch
websites for others to enjoy without worrying about any legal repercussions. There was no real worry
about getting sued because a site did not work correctly, or someone was offended by a comment on
your message board. Now, however, there is simply no chance that you can put a website out there
without the minimum protection of a terms of service agreement and privacy policy. As developers, this
is something that is easily overlooked because there is no real coding and the legal writing involved
is usually out of the realm of our expertise. Because you will be charging real money for premium
features of the site, it is essential to have terms of service that define what users can expect for the
money they are spending. Although you won’t be storing any sensitive information about users in
the database it’s still necessary to have a privacy policy that lets the users know exactly what information
is being collected and how it’s used to enhance their experience with the site. Again, one of the biggest
problems with site legality is that you most likely aren’t moonlighting as a lawyer so you probably
can’t just write something up quickly yourself and expect to be protected.

After you have solved all these outstanding problems, you still have to figure out how to deploy all
the application pieces and make them available to the public. For most new sites, it’s more than suf-
ficient to make use of a shared hosting provider. As I said way back in Chapter 2, once you start to
have millions of users and find yourself needing complete control over the various server settings,
you’ll then need to look at a dedicated hosting solution, but for now a shared hosting provider is
more than adequate. Once you pick a hosting provider, you then need to perform all the necessary
steps to upload and configure the Silverlight application as well as the ASP.NET application contain-
ing the main FitnessTrackerPlus home page and the WCF RIA Services that have been created. As
you can see, there is still quite a bit of work left to do so let’s get started.

Design

In this section, you’ll look at what steps are required to complete all the supplemental pages for the
site. This involves creating a working Contact page, Terms of Service, Privacy Policy, and About page.
Once these steps are complete, you can move on to picking a shared hosting provider for the site.

supplemental Pages
When you first started working on FitnessTrackerPlus, you created several placeholder Page controls
that you would design and implement later on. These include the About, Contact, Terms of Service,
and Privacy Policy pages. Before deploying FitnessTrackerPlus, you must make sure that users can
send you feedback through the contact page, and that the other pages have been completed with the
necessary content.

About FitnessTrackerPlus

Most websites now have some kind of About page that covers the origins of the site, including some
basic biographical information about the site’s owner and founder. Even though the main page has a

534045c12.indd 464 3/14/10 2:48:57 PM

Design ❘ 465

few bullet points about the main features, most visitors will want to know a little bit more about the
site such as:

Who is running it?➤➤

Why was it developed?➤➤

What is the company behind the site?➤➤

Because this is just a sample site, you don’t really have much of a company history to talk about.
You can, however, provide visitors of this page with a clear mission statement that leaves them with
a feeling that you genuinely care about the site and about helping site users achieve their fitness
goals. A good mission statement for FitnessTrackerPlus could be the following:

FitnessTrackerPlus strives to provide the most powerful fitness tracking capabilities on the
Web. It is our goal to provide quick and easy tracking of foods, exercises, and measurements
as well as to enable you to easily share your success with others.

As the site grows in popularity, this page will most likely start to include things such as customer
testimonials, as well as the history of FitnessTrackerPlus. You could even take a look at how other
sites use this page to get some ideas. For example, many sites use this page to provide a blog that
tells visitors and users what is going on with the site, as well as what features may be in development
for future use. No matter what you ultimately decide for this page, you should consider it to be an
important piece of any public facing site.

Contact

There are many things that can happen when you open up your site to the rest of the world—some
positive, some negative. If your site is running great and users are experiencing fast response times,
then most likely you will hear nothing from your users. If, however, the site response gets slow, or
users are starting to see cryptic error messages instead of normal page content, you can safely expect
to hear from almost every last one of them. It takes a lot of hard work and time to successfully grow
a large community of users, and you don’t want to lose any of them due to technical issues with the
site. You never want things to go wrong with a web application but sometimes they do.

As an owner of a website, it is never easy to hear negative feedback from your users. After all, you
put a lot of blood, sweat, and tears into your site and you probably would like to think it is perfect.
The truth of the matter is that negative users are really your best friend. If something is wrong with
the site that has annoyed a user to such a degree that she has taken time out of a busy day to let you
know about the problem, chances are there may be others who are having the very same problem
and are just not telling you about it. Unless you have a 24/7 support staff, or you are really into
using your own site, you have no way of knowing when things are going wrong except for when
users complain directly to you, the site administrator.

Right now, there is no real way for users to give you any kind of feedback—be it positive or
negative—and you will need to change that. When you first started creating the site, you added a
placeholder for the Contact page, and now you will need to flesh out some requirements for that
page so that users can send you feedback. The first and most important requirement is the need for
a TextBox control where users can type in a message. As the site gets more popular and you are

534045c12.indd 465 3/14/10 2:48:57 PM

466 ❘ ChaPter 12 Let’s Go Live

able to bring on support staff you may even want to filter the messages based on an appropriate
topic. One way to do this is to add a ComboBox control to the page with a list of topics such as the
following:

Technical problems➤➤

Abuse/complaints➤➤

General feedback➤➤

Sales and marketing➤➤

One additional thing to consider when providing a means for your users to contact you is the ability to
distinguish between real users and automated form submission bots. Several different methods for solv-
ing this issue have been developed over the years. Perhaps the most popular solution and one that
you have no doubt encountered while visiting sites is the use of a CAPTCHA image. CAPTCHA
solutions involve creating an image dynamically on the page, usually a set of numbers or a common
phrase, and forcing real users to type the numbers or phrase into a TextBox control before submit-
ting the message. The server code will then compare the user-entered phrase with the one that was
generated, and if they match, then the message is sent to the appropriate place. If there is not a
match then an error message is displayed on the page telling the user, or in this case most likely an
automated bot, that the phrase did not match and that the user will need to try again. Automated
bots have a difficult time circumventing a system like this, and it can really cut down on the amount
of spam e-mails that reach you as the administrator. CAPTCHA isn’t fool-proof. However, it does
provide a decent solution for cutting down spam while still providing your real users with a way
to contact you about issues or concerns. Because this seems like a sufficient way to cut down on
the number of spam e-mails that are sent from the site, you should also include a Silverlight-based
implementation of the CAPTCHA system for the FitnessTrackerPlus contact page.

Password Reset

After initially registering for the site, users will most likely visit the site on a daily basis to at least
enter their foods and exercises. It is entirely possible, however, that at some point the user decides
to take an extended hiatus from his diet and exercise routine. When he does decide to come back
to the site, he may very well have forgotten his password information. FitnessTrackerPlus needs to
provide some easy means of resetting a forgotten password. There are several ways to provide this
kind of functionality on the site. Many sites allow you to recover a lost or forgotten password by
simply e-mailing you the password information after you have successfully answered your security
question. This will not work for FitnessTrackerPlus, however, because the passwords are not stored
in the database using a bi-directional encryption system. Remember back in the third chapter during
the user registration discussion, the decision was made to make use of a one-way SHA-1 hash value
for passwords. This means that you have no way to actually recover the original password value. The
alternative solution and the one you’ll use for FitnessTrackerPlus is to auto-generate a new password
of random characters and send that to a user’s primary e-mail account after she has successfully
answered her security question.

To provide this feature, you make a small modification to the main FitnessTrackerPlus home page,
and you also need to add an additional page to the project that presents the user with her security

534045c12.indd 466 3/14/10 2:48:57 PM

Design ❘ 467

question. The first modification required is to add a HyperlinkButton control with the text “Forgot
Password” as part of the existing login control. When this link is clicked, users are taken to a new
page that asks for the e-mail address submitted during registration. Once the user enters a valid
e-mail address, the security question created during registration displays and the user must success-
fully answer the question in order to proceed. If the user is able to answer the question, a message
displays telling the user that a new password has been generated and is being sent to the e-mail
address that the user has provided. Once the user enters this new password, he can log in to the site
and change it to something easier to remember in the account settings page.

Privacy Policy

I already discussed in Chapter 3 how vital it is to gain the trust of your users by not collecting more
than the minimum amount of personal information you need for users to work with the site. By
making use of the site features, users are agreeing to both a terms of service agreement and a privacy
policy. The privacy policy will need to outline exactly how you utilize the information you are col-
lecting from the user. It is important to also inform the user that you are collecting the IP address
when they visit your site and that this IP address can potentially be used to locate the computer of
origin that is accessing the site.

Unless you happen to be lucky enough to have finished law school while learning how to program,
it is usually a good idea to use existing resources when you draw up a useful privacy policy. Millions
of these policies are on the Internet today so rather than try and do this on your own, you should
either hire a professional or look into downloading a privacy policy from a legal website such as
http://www.allbusiness.com or http://www.freeprivacypolicy.com. These sites provide you
with a template that you can easily customize to reflect your own site. For any site you create that
you have plans to turn into a revenue-generating business, it is always best to consult a lawyer just
to ensure that everything that is legally required in a privacy policy is included and worded correctly
in your own policy.

Terms of Service

Now that you have outlined for users how their information will be collected and stored in the form
of a privacy policy, you need to let users know the rules of your site. No website is complete without
both the privacy policy and terms of service document. There is simply no chance that you can put a
website out there without the protection of a terms of service agreement.

Your site will include social networking features and you should define rules for those features
because you cannot be expected to police your site 24 hours a day, 7 days a week. Therefore, at a
minimum, the terms of service agreement should outline what is considered acceptable behavior
when a user logs in to the site. Be sure to let users know that breaking the terms could result in the
loss of their account. There are many other legal areas of the terms of service that are standard
across all websites, and the template sites mentioned in the previous section provide a great starting
point in developing your own document. Again, as is the case with the privacy policy, there is no
substitute for hiring a lawyer to review your terms of service in order to get the maximum legal
protection for your site.

534045c12.indd 467 3/14/10 2:48:57 PM

468 ❘ ChaPter 12 Let’s Go Live

shared hosting Providers
When you have completed all of the necessary work required to implement the supplemental pages,
you will finally be in a position to deploy the site to the Web and start registering new users. When
looking for potential hosting providers for FitnessTrackerPlus, you will no doubt find many viable
options. However, you should remember that whatever your choice, it must satisfy your site require-
ments. In this case, you need a hosting provider that supports ASP.NET, Silverlight 4, WCF RIA
Services, and of course SQL Server 2008. I don’t think I need to mention that the hosting provider
also needs to be running a recent version of IIS as well.

Although there are many possible choices for hosting providers, the one that stands out, at least in
my personal experience, is Discount ASP.NET. I have been using Discount ASP.NET for several years
to host my own ASP.NET and Silverlight solutions and have had nothing but a positive experience.
For FitnessTrackerPlus, the decision to use Discount ASP.NET was an easy one, not only because of
my personal experience with it, but also because Discount ASP.NET has a habit of always support-
ing the latest and greatest .NET technology on their servers. You won’t always find hosting providers
that are willing to install beta technology on their shared servers, but more often than not you will
be able to run just about any new Microsoft-based technology on Discount ASP.NET provided there
is at least a Go-Live license available. Personal experience aside, Discount ASP.NET is one of the few
hosting providers that currently supports all the FitnessTrackerPlus requirements such as Silverlight
4, SQL 2008, and WCF RIA Services. I understand that in many cases these requirements do not
involve a specific installation to be performed on a server but some hosting providers will actually
prevent you from using these technologies until the absolute final releases are available.

As you will see, Discount ASP.NET provides many tools that come in handy not only during the
deployment of the FitnessTrackerPlus application but also when you’re performing any ongoing site
maintenance. It is also one of the few hosting providers that offer a full developer API. The API
provides programmatic access to many of the tools, settings, and utilities available from the main
Control Panel page.

solution

This section covers the implementation of the contact page. After this is complete, you will see how
to implement a simple password reset system that helps users who may have forgotten the password
that they created during the initial registration process. Finally, you will see step by step how to build
a release version of the application and deploy it to a Microsoft-certified shared hosting provider,
making it available to everyone on the Web.

Creating the Contact Page

The first step in creating the contact page is to implement a user interface that contains a ComboBox
with a list of reasons for contact, a TextBox to hold the name of the person leaving the message,
another TextBox to hold the message, and finally a CAPTCHA image and TextBox control that
will cut the amount of generated automated spam entries. In Listing 12-1, an Image control named
Captcha acts as a placeholder for the dynamically generated CAPTCHA image.

534045c12.indd 468 3/14/10 2:48:57 PM

Solution ❘ 469

listing 12-1: Contact.xaml

<navigation:Page x:Class=”FitnessTrackerPlus.Views.Contact”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:navigation=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation”
 Title=”FitnessTrackerPlus - Contact”>
 <navigation:Page.Resources>
 <Style x:Key=”BorderStyle” TargetType=”Border”>
 <Setter Property=”BorderBrush” Value=”#FF000000” />
 <Setter Property=”BorderThickness” Value=”3” />
 <Setter Property=”Width” Value=”600” />
 </Style>
 <Style x:Key=”MainStackPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 </Style>
 <Style x:Key=”ReasonStackPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”Orientation” Value=”Horizontal” />
 </Style>
 <Style x:Key=”ReasonsStyle” TargetType=”ComboBox”>
 <Setter Property=”Margin” Value=”10,0,0,0” />
 </Style>
 <Style x:Key=”MessageStackPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”Orientation” Value=”Horizontal” />
 <Setter Property=”Margin” Value=”0,20,0,0” />
 </Style>
 <Style x:Key=”NameTextBoxStyle” TargetType=”TextBox”>
 <Setter Property=”Width” Value=”200” />
 <Setter Property=”Height” Value=”25” />
 <Setter Property=”Margin” Value=”10,0,0,0” />
 </Style>
 <Style x:Key=”MessageTextBoxStyle” TargetType=”TextBox”>
 <Setter Property=”AcceptsReturn” Value=”True” />
 <Setter Property=”Width” Value=”400” />
 <Setter Property=”Height” Value=”200” />
 <Setter Property=”Margin” Value=”10,0,0,0” />
 </Style>
 <Style x:Key=”SubmissionTextStyle” TargetType=”TextBlock”>
 <Setter Property=”Margin” Value=”0,20,0,0” />
 </Style>
 <Style x:Key=”SubmissionStackPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”Orientation” Value=”Horizontal” />
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 </Style>
 <Style x:Key=”CaptchaTextBoxStyle” TargetType=”TextBox”>
 <Setter Property=”Margin” Value=”10,0,0,0” />
 <Setter Property=”Width” Value=”100” />
 <Setter Property=”Height” Value=”25” />
 <Setter Property=”HorizontalContentAlignment” Value=”Center” />
 </Style>
 <Style x:Key=”SubmitButtonStyle” TargetType=”Button”>
 <Setter Property=”HorizontalAlignment” Value=”Center” />

continues

534045c12.indd 469 3/14/10 2:48:58 PM

470 ❘ ChaPter 12 Let’s Go Live

 <Setter Property=”Margin” Value=”0,10,0,20” />
 <Setter Property=”Content” Value=”Submit Message” />
 </Style>
 </navigation:Page.Resources>
 <Border Style=”{StaticResource BorderStyle}”>
 <StackPanel Style=”{StaticResource MainStackPanelStyle}”>
 <StackPanel Style=”{StaticResource ReasonStackPanelStyle}”>
 <TextBlock Text=”Please select the reason for contacting us” />
 <ComboBox x:Name=”Reasons” Style=”{StaticResource ReasonsStyle}”>
 <ComboBox.Items>
 <ComboBoxItem Content=”General Feedback”
Tag=”0” IsSelected=”True” />
 <ComboBoxItem Content=”Technical Problems” Tag=”1” />
 <ComboBoxItem Content=”Abuse/Complaints” Tag=”2” />
 <ComboBoxItem Content=”Sales and Marketing” Tag=”3” />
 </ComboBox.Items>
 </ComboBox>
 </StackPanel>
 <StackPanel Style=”{StaticResource MessageStackPanelStyle}”>
 <TextBlock Text=”Name:” />
 <TextBox x:Name=”Name” Style=”{StaticResource
NameTextBoxStyle}” />
 </StackPanel>
 <StackPanel Style=”{StaticResource MessageStackPanelStyle}”>
 <TextBlock Text=”Message:” />
 <TextBox x:Name=”Message” Style=”{StaticResource
MessageTextBoxStyle}” />
 </StackPanel>
 <TextBlock Text=”To prevent automated submissions please enter
the text displayed in the image below” Style=”{StaticResource
SubmissionTextStyle}” />
 <StackPanel Style=”{StaticResource SubmissionStackPanelStyle}”>
 <Image x:Name=”Captcha” />
 <TextBox x:Name=”CaptchaText” Style=”{StaticResource
CaptchaTextBoxStyle}” />
 </StackPanel>
 <Button x:Name=”SubmitMessage” Style=”{StaticResource
SubmitButtonStyle}” />
 </StackPanel>
 </Border>
</navigation:Page>

Because you ultimately want this contact page to provide a way for visitors to send you feedback,
you need a mechanism to send an e-mail message to an administrator account. Later on, as the
site grows, you may find that messages should be routed to different mailboxes depending on the
reason selected from the ComboBox control. For now, let’s just assume that all messages are sent
to the administrator e-mail account. As you may have guessed, you can’t send an e-mail message
directly from Silverlight, but you can add the functionality to one of the WCF RIA Services you
have created and make use of that method from the Silverlight client. You can, however, send email

listing 12-1 (continued)

534045c12.indd 470 3/14/10 2:48:58 PM

Solution ❘ 471

messages easily enough from a web service so the best place to add the new method is probably
the UserInformationService class. The new method does not return anything to the client and it
doesn’t make use of any LINQ to SQL entities, so it should be marked with the [Invoke] attribute
in order for it to be exposed by the WCF RIA Services Framework. The following code snippet shows
a SendEmail method that uses the ASP.NET SmtpClient class to actually send the message.

[Invoke]
public void SendEmail(string subject, string text, string toAddress,
string fromAddress)
{
 MailMessage message = new MailMessage();
 SmtpClient server = new SmtpClient(“localhost”);

 message.From = new MailAddress(fromAddress);
 message.Subject = subject;
 message.Body = text;
 message.IsBodyHtml = true;
 message.To.Add(new MailAddress(toAddress));

 server.Timeout = 10000;
 server.Send(message);
}

Code snippet UserInformationService.cs

In the preceding code, the specified mail server is set to localhost. You need to modify this to
reflect a valid SMTP mail server to which you have access when you add this functionality to your
own applications. In this case, it just so happens that for Discount ASP.NET hosted sites localhost
is a valid SMTP mail server, so if you end up using this hosting provider for your own applications
this code will be directly portable.

Once you have a method that you can use to send an e-mail to the administrator, it’s time to work
on the code behind for the contact page. To prevent automated submissions, you want to display
a CAPTCHA image and force the visitor to enter the displayed text in order to send any message.
So, you need to create some random text and convert that text into an image for display. The best
place to do this is in the OnNavigatedTo event handler. In the following code, seven random num-
bers are converted into a string and inserted into a TextBlock control. This dynamically created
string is then stored so that it can be compared to what the user enters in the TextBox. Next, the
TextBlock is converted into an image using the new WriteableBitmap class that is now available
in Silverlight 4. Finally, the newly created image is copied to the placeholder Image control so that
it will be displayed when the page is loaded.

private string captchaKey = “”;

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 TextBlock captchaText = new TextBlock();

 captchaText.FontSize = 22;

534045c12.indd 471 3/14/10 2:48:58 PM

472 ❘ ChaPter 12 Let’s Go Live

 captchaText.FontWeight = FontWeights.Bold;

 StringBuilder builder = new StringBuilder();
 Random random = new Random();

 // Generate random text

 for (int i = 0; i < 7; i++)
 builder.Append(random.Next().ToString()[0]);

 captchaText.Text = builder.ToString();

 // Store the random text for comparison later

 captchaKey = captchaText.Text;

 // Now draw the captcha image

 WriteableBitmap bitmap = new WriteableBitmap((int)captchaText.ActualWidth,
(int)captchaText.ActualHeight);

 bitmap.Render(captchaText, null);
 bitmap.Invalidate();

 Captcha.Source = bitmap;
}

Code snippet Contact.xaml.cs

Now the only thing left to make this page work is to implement a Click handler for the SubmitMessage
button. In the following code, a Click event handler is created in the Loaded event of the page. In that
handler, the text the user enters is compared against the CAPTCHA text that was created when the page
was loaded to ensure that they match. If the user has entered the information correctly, a new e-mail
message is sent using the selected reason, name, and message information.

public Contact()
{
 InitializeComponent();

 Loaded += (s, e) =>
 {
 SubmitMessage.Click += (se, ev) =>
 {
 // First make sure that the captcha text is correct

 if (CaptchaText.Text == captchaKey)
 {
 UserInformationContext context = new UserInformationContext();

 context.SendEmail((Reasons.SelectedItem as
ListBoxItem).Content.ToString(),
String.Format(“Message From: {0}, Message Text: {1}”,
Name.Text, Message.Text), “admin@fitnesstrackerplus.com”,
“admin@fitnesstrackerplus.com”);

 MessageBox.Show(“Your message has been sent,

534045c12.indd 472 3/14/10 2:48:58 PM

Solution ❘ 473

you will receive a reply as soon as possible”);

 // Clear the contact form

 Message.Text = “”;
 Name.Text = “”;
 CaptchaText.Text = “”;
 }
 else
 MessageBox.Show(“The text you have entered does not match
the image being displayed”);

 };
 };
}

Code snippet Contact.xaml.cs

I’m not going to pretend that this is any kind of award-winning CAPTCHA solution, but it should suf-
ficiently prevent most automated submissions. The intent of this solution is not only to show you how
to write a very basic numerical version of a CAPTCHA solution but also to show you how easy it is to
do so using the new WriteableBitmap class that is available in Silverlight 4. If you find that you need
something more sophisticated there are many other CAPTCHA implementations out on the Web.

With all of this complete, you are left with a functional contact page like the one shown in Figure 12-1.
For better or worse, visitors of FitnessTrackerPlus will now be able to leave you feedback about the site.

Figure 12-1

534045c12.indd 473 3/14/10 2:48:58 PM

474 ❘ ChaPter 12 Let’s Go Live

Enabling Password Resets

One of the final items on the list for FitnessTrackerPlus now that the contact page is ready to go is to
allow users to reset their password if they have forgotten it. As mentioned earlier, although ideally
users will use the site on a daily basis, some may take an extended break, and then decide to come
back having completely forgotten their passwords. In the “Design” section earlier in this chapter,
you saw why you really can’t provide password recovery; because passwords are stored using a one-
way hashing algorithm, you must provide users with a page enabling them to reset their password
and send the password to the e-mail address that they gave during the registration process.

The first step in getting this last feature working is to modify the Login control so that the Reset
Password link is available. Clicking this link simply redirects users to a new page where they must
enter the e-mail address that they provided when they registered for the site. Listing 12-2 shows the
XAML code for the updated Login control. Notice how the only item that was needed was a new
HyperlinkButton control added to the Grid.

listing 12-2: Login.xaml

<UserControl x:Class=”FitnessTrackerPlus.Controls.Login”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”>
 <UserControl.Resources>
 <Style x:Key=”LoginBoxBorderStyle” TargetType=”Border”>
 <Setter Property=”BorderThickness” Value=”2” />
 </Style>
 <Style x:Key=”LoginBoxGridStyle” TargetType=”Grid”>
 <Setter Property=”VerticalAlignment” Value=”Top” />
 </Style>
 <Style x:Key=”LoginTextStyle” TargetType=”TextBlock”>
 </Style>
 <Style x:Key=”LoginTextBoxStyle” TargetType=”TextBox”>
 <Setter Property=”Width” Value=”200” />
 <Setter Property=”Margin” Value=”10,0,0,0”/>
 </Style>
 <Style x:Key=”LoginPasswordBoxStyle” TargetType=”PasswordBox”>
 <Setter Property=”Width” Value=”200” />
 <Setter Property=”Margin” Value=”10,0,0,0”/>
 </Style>
 <Style x:Key=”LoginErrorStyle” TargetType=”TextBlock”>
 <Setter Property=”Foreground” Value=”#FFFF0000” />
 <Setter Property=”Margin” Value=”0,5,0,0” />
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 </Style>
 <Style x:Key=”LoginButtonStyle” TargetType=”Button”>
 <Setter Property=”HorizontalAlignment” Value=”Right” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”Content” Value=”Login” />
 </Style>
 <Style x:Key=”ResetPasswordStyle” TargetType=”HyperlinkButton”>
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”Content” Value=”Reset Password” />

534045c12.indd 474 3/14/10 2:48:58 PM

Solution ❘ 475

 <Setter Property=”NavigateUri” Value=”ResetPassword” />
 </Style>
 </UserControl.Resources>
 <Border Style=”{StaticResource LoginBoxBorderStyle}”>
 <Grid Style=”{StaticResource LoginBoxGridStyle}”>
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 <RowDefinition />
 </Grid.RowDefinitions>
 <TextBlock Text=”Email Address:” Grid.Row=”0” Grid.Column=”0”
Style=”{StaticResource LoginTextStyle}” />
 <TextBox x:Name=”EmailAddress” Grid.Row=”0” Grid.Column=”1”
Style=”{StaticResource LoginTextBoxStyle}” />
 <TextBlock Text=”Password:” Grid.Row=”1” Grid.Column=”0”
Style=”{StaticResource LoginTextStyle}” />
 <PasswordBox x:Name=”Password” Grid.Row=”1” Grid.Column=”1”
Style=”{StaticResource LoginPasswordBoxStyle}” />
 <HyperlinkButton Style=”{StaticResource ResetPasswordStyle}”
Grid.Column=”0” Grid.Row=”2” />
 <Button x:Name=”LoginUser” Style=”{StaticResource
LoginButtonStyle}” Grid.Column=”1” Grid.Row=”2” />
 <TextBlock x:Name=”LoginError” Style=”{StaticResource
LoginErrorStyle}” Grid.Column=”0” Grid.ColumnSpan=”2” Grid.Row=”3” />
 </Grid>
 </Border>
</UserControl>

After the Login control has been modified, you also need to update the UriMapper declaration in
the App.xaml file so that the navigation will work correctly. The following code shows the updated
UriMapper section:

<uri:UriMapper x:Key=”UriMap”>
 <uri:UriMapping Uri=”Home” MappedUri=”/Views/Home.xaml” />
 <uri:UriMapping Uri=”About” MappedUri=”/Views/About.xaml” />
 <uri:UriMapping Uri=”Contact” MappedUri=”/Views/Contact.xaml” />
 <uri:UriMapping Uri=”Privacy” MappedUri=”/Views/Privacy.xaml” />
 <uri:UriMapping Uri=”Signup” MappedUri=”/Views/Signup.xaml” />
 <uri:UriMapping Uri=”Terms” MappedUri=”/Views/Terms.xaml” />
 <uri:UriMapping Uri=”ResetPassword” MappedUri=”/Views/ResetPassword.xaml” />
 <uri:UriMapping Uri=”UserHome” MappedUri=”/Views/UserHome.xaml” />
 <uri:UriMapping Uri=”Dashboard” MappedUri=”/Views/Dashboard/Dashboard.xaml” />
 <uri:UriMapping Uri=”AccountSettings”
MappedUri=”/Views/Dashboard/AccountSettings.xaml” />
 <uri:UriMapping Uri=”FoodLog” MappedUri=”/Views/Food/FoodLog.xaml” />
 <uri:UriMapping Uri=”ExerciseLog”
MappedUri=”/Views/Exercise/ExerciseLog.xaml” />
 <uri:UriMapping Uri=”MeasurementLog”
MappedUri=”/Views/Measurement/MeasurementLog.xaml” />

534045c12.indd 475 3/14/10 2:48:59 PM

476 ❘ ChaPter 12 Let’s Go Live

 <uri:UriMapping Uri=”JournalSettings”
MappedUri=”/Views/Journal/JournalSettings.xaml” />
 <uri:UriMapping Uri=”Journals/{username}”
MappedUri=”/Views/Journal/PublicJournal.xaml?user={username}” />
</uri:UriMapper>

Code snippet App.xaml

A quick look at the preceding code should tip you off that you will also need to add a new Page con-
trol to the Silverlight project in the Views folder called ResetPassword.

There are a couple of requirements for the user interface of this new page:

When users arrive at this page, they should be expected to enter the e-mail address that they ➤➤

used during registration. A TextBox control is required to hold this value.

Once the user enters this value, he or she clicks a Submit button and a ➤➤ UserInformation
object for the supplied e-mail address is retrieved.

Assuming that the e-mail address is valid, the user is then presented with the security ques-➤➤

tion and a TextBox control to hold the security answer.

If the security question is answered correctly, a ➤➤ MessageBox control is displayed letting the
user know that a new password has been sent to them.

Listing 12-3 shows the XAML code required for the ResetPassword user interface. Notice how the
only items that are visible by default are the e-mail address collection StackPanel and the Submit
button. The security question and answer StackPanel are hidden until valid user information has
been retrieved.

listing 12-3: ResetPassword.xaml

<navigation:Page x:Class=”FitnessTrackerPlus.Views.ResetPassword”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:navigation=”clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation”
 Title=”FitnessTrackerPlus - Reset Password”>
 <navigation:Page.Resources>
 <Style x:Key=”BorderStyle” TargetType=”Border”>
 <Setter Property=”BorderBrush” Value=”#FF000000” />
 <Setter Property=”BorderThickness” Value=”3” />
 <Setter Property=”Width” Value=”600” />
 </Style>
 <Style x:Key=”MainStackPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 </Style>
 <Style x:Key=”EmailStackPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”Orientation” Value=”Horizontal” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 </Style>
 <Style x:Key=”MessageStackPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”Orientation” Value=”Horizontal” />

534045c12.indd 476 3/14/10 2:48:59 PM

Solution ❘ 477

 <Setter Property=”HorizontalAlignment” Value=”Center” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 </Style>
 <Style x:Key=”SecurityStackPanelStyle” TargetType=”StackPanel”>
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 <Setter Property=”Visibility” Value=”Collapsed” />
 </Style>
 <Style x:Key=”SecurityAnswerStackPanelStyle”
TargetType=”StackPanel”>
 <Setter Property=”Orientation” Value=”Horizontal” />
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 <Setter Property=”Margin” Value=”0,10,0,0” />
 </Style>
 <Style x:Key=”TextBoxStyle” TargetType=”TextBox”>
 <Setter Property=”Margin” Value=”10,0,0,0” />
 <Setter Property=”Width” Value=”200” />
 <Setter Property=”Height” Value=”25” />
 </Style>
 <Style x:Key=”SubmitButtonStyle” TargetType=”Button”>
 <Setter Property=”HorizontalAlignment” Value=”Center” />
 <Setter Property=”Margin” Value=”0,10,0,20” />
 <Setter Property=”Content” Value=”Submit” />
 </Style>
 </navigation:Page.Resources>
 <Border Style=”{StaticResource BorderStyle}”>
 <StackPanel Style=”{StaticResource MainStackPanelStyle}”>
 <StackPanel Style=”{StaticResource EmailStackPanelStyle}”>
 <TextBlock Text=”Please enter the email address you used
when you registered:” />
 <TextBox x:Name=”Email” Style=”{StaticResource
TextBoxStyle}” />
 </StackPanel>
 <StackPanel x:Name=”SecurityPanel” Style=”{StaticResource
SecurityStackPanelStyle}”>
 <TextBlock Text=”Please answer your security question:” />
 <StackPanel Style=”{StaticResource
SecurityAnswerStackPanelStyle}”>
 <TextBlock x:Name=”SecurityQuestion” />
 <TextBox x:Name=”SecurityAnswer”
Style=”{StaticResource TextBoxStyle}” />
 </StackPanel>
 </StackPanel>
 <Button x:Name=”Submit” Style=”{StaticResource
SubmitButtonStyle}” />
 </StackPanel>
 </Border>
</navigation:Page>

Before getting into the code behind for the page, you first need to make a modification to the cus-
tom MembershipProvider class. The MembershipProvider class includes an abstract method called
ResetPassword that you will need to override. In the following code, the implementation of the
ResetPassword method first retrieves the UserInformation object for the user associated with the
supplied e-mail address. Next, the user supplied security answer is compared with the one stored in

534045c12.indd 477 3/14/10 2:48:59 PM

478 ❘ ChaPter 12 Let’s Go Live

the database. If the two answers match, a random password is generated and encrypted using the
SHA1 one-way hash algorithm. Otherwise, the method simply returns null indicating that the user
failed to answer the security question correctly. After storing the new password in the database, the
unencrypted version of the temporary password is then returned to the caller so that it can be sent
to the user.

public override string ResetPassword(string username, string answer)
{
 try
 {
 // Ensure that the security answer is correct

 UserInformation currentUser = context.UserInformations.Where(e =>
 e.email_address == username &&
 e.security_answer ==
FormsAuthentication.HashPasswordForStoringInConfigFile(answer,
“SHA1”)).SingleOrDefault();

 string tempPassword = CreateRandomPassword();

 if (currentUser != null)
 {
 currentUser.password =
FormsAuthentication.HashPasswordForStoringInConfigFile(tempPassword,
“SHA1”);

 context.SubmitChanges();
 return tempPassword;
 }
 }
 catch (Exception)
 {
 }

 return null;
}

public string CreateRandomPassword()
{
 StringBuilder builder = new StringBuilder();
 Random random = new Random();
 char ch;

 for (int i = 0; i < 5; i++)
 {
 ch = Convert.ToChar(Convert.ToInt32(Math.Floor(26 *
random.NextDouble() + 65)));
 builder.Append(ch);
 builder.Append(random.Next().ToString()[0]);
 }

 return builder.ToString();
}

Code snippet MembershipProvider.cs

534045c12.indd 478 3/14/10 2:48:59 PM

Solution ❘ 479

Now, because the Silverlight client won’t interact with the MembershipProvider directly, you also
need an additional method in the UserInformationService that not only acts as a proxy to the
ResetPassword method but also makes use of the SendEmail method created earlier to actually
send the new password to the user and return true to the caller. If the user failed to answer the
security question correctly, this method does not send the e-mail and instead returns false to the
caller. The following code shows the ResetPassword proxy method required by the Silverlight
client.

[Invoke]
public bool ResetPassword(string email, string answer)
{
 string tempPassword = provider.ResetPassword(email, answer);

 if (!String.IsNullOrEmpty(tempPassword))
 {
 SendEmail(“FitnessTrackerPlus Important Information”,
String.Format(“Here is your new temporary password: {0}”, tempPassword),
email, “admin@fitnesstrackerplus.com”);

 return true;
 }

 return false;
}

Code snippet UserInformationService.cs

At this point, you have service methods that can retrieve the UserInformation instance based
on the supplied e-mail, and you can also reset the password for the user assuming that they have
answered the security question correctly. Now all you need to do is implement the code behind
logic, which really only involves implementing the Click event of the Submit button. In the fol-
lowing code, the behavior of the Click event varies depending on which StackPanel is currently
visible. For example, if the StackPanel that collects the e-mail address is currently visible, the
UserInformationService is used to collect the UserInformation object containing the security
question for the user. Otherwise, if the StackPanel containing the security question is currently
being displayed, the ResetPassword method will be called and, assuming the user supplied the cor-
rect answer to the security question, a new temporary password will be sent to the e-mail address
that was provided.

private void Submit_Click(object sender, RoutedEventArgs e)
{
 UserInformationContext context = new UserInformationContext();

 if (EmailPanel.Visibility == Visibility.Visible)
 {
 if (!String.IsNullOrEmpty(Email.Text))
 {
 context.Load<UserInformation>(context.
GetUserQuery(Email.Text),
 (Completed) =>
 {

534045c12.indd 479 3/14/10 2:48:59 PM

480 ❘ ChaPter 12 Let’s Go Live

 if (!Completed.HasError)
 {
 UserInformation user =
Completed.Entities.FirstOrDefault();

 if (user == null)
 MessageBox.Show(“No user was found with the
supplied email address”);
 else
 {
 SecurityQuestion.Text = user.security_question;

 SecurityPanel.Visibility = Visibility.Visible;
 EmailPanel.Visibility = Visibility.Collapsed;
 }
 }
 else
 MessageBox.Show(“No user was found with the
supplied email address”);

 }, null);
 }
 }
 else if (SecurityPanel.Visibility == Visibility.Visible)
 {
 context.ResetPassword(Email.Text, SecurityAnswer.Text,
 (Completed) =>
 {
 if (!Completed.HasError)
 {
 if (Completed.Value)
 MessageBox.Show(“A new temporary password has
been sent to your email address”);
 else
 MessageBox.Show(“You have provided an incorrect
answer to your security question”);
 }

 }, null);
 }
}

Code snippet ResetPassword.xaml.cs

Discount ASP.NET

In the “Design” section, the decision was made to deploy FitnessTrackerPlus to a shared hosting
provider. The hosting provider is Discount ASP.NET because it provides great support for .NET,
Silverlight 4, WCF RIA Services, and so on. In addition to this support, Discount ASP.NET also

534045c12.indd 480 3/14/10 2:48:59 PM

Solution ❘ 481

provides many utilities that make management and deployment of your Silverlight application and
SQL Server database a breeze. You can get started by creating and configuring an account over at
Discount ASP.NET by following these steps:

 1. When you create your new account at Discount ASP.NET, you want to be sure to include
the basic SQL Server 2008 Add-On feature to your account so that you can use the
FitnessTrackerPlus database.

 2. Log into the site. You’re presented with a dashboard page, which gives you access to your
account information, billing management, e-mail accounts, various web server tools and
utilities, database management and more. Figure 12-2 shows the control panel page for
FitnessTrackerPlus.

Figure 12-2

534045c12.indd 481 3/14/10 2:48:59 PM

482 ❘ ChaPter 12 Let’s Go Live

 3. Click the Account Info/Edit link and take note of the FTP Information section. You’ll need
these details when you are ready to actually deploy the FitnessTrackerPlus application files.

 4. For FitnessTrackerPlus you’ll deploy everything via FTP, so grab a copy of a good FTP Client
program such as Filezilla, which is highly recommended.

 5. After you have the FTP Information, it’s time to get familiar with a utility that you’ll use any-
time you want to make changes to the IIS configuration. Click Tools & Utilities ➪➤IIS Tools.
This loads the page shown in Figure 12-3. As you can see, from here you have access to many
important IIS settings.

Figure 12-3

 6. Although you are using a shared hosting provider, you still have some configuration
options available for your web application. You need to make sure that you enable the
FitnessTrackerPlus.aspx page as a default document. When visitors type http://www
.fitnesstrackerplus.com in their web browsers, you want to make sure that the main
page containing the Silverlight application is displayed. Figure 12-4 shows this being added
under the Default Documents tab.

 7. Make sure that directory browsing has been disabled under the Directory Browsing tab
shown in Figure 12-5. You don’t want visitors to view the entire contents of the application
directory because this could compromise the site’s security.

534045c12.indd 482 3/14/10 2:48:59 PM

Solution ❘ 483

Figure 12-4

Figure 12-5

534045c12.indd 483 3/14/10 2:48:59 PM

484 ❘ ChaPter 12 Let’s Go Live

 8. Shut down your website instance before actually uploading any files. Under the Start/Stop
Web tab you have the ability to stop and start your website instance whenever you are
performing site maintenance. When the instance is stopped, visitors are shown a Web Page
Unavailable page. Figure 12-6 shows that the instance of FitnessTrackerPlus has been shut
down and is ready for maintenance while Figure 12-7 shows the Site Unavailable page that
visitors will see as you work on deploying the site files.

Figure 12-6

Figure 12-7

534045c12.indd 484 3/14/10 2:49:00 PM

Solution ❘ 485

At this point you are ready to build FitnessTrackerPlus and deploy the necessary files to Discount
ASP.NET. To do so, follow these steps:

 1. Make sure that you are building a Release version of the application, so in Visual Studio look
for the active configuration in the toolbar and change it from Debug to Release.

 2. Right-click the ASP.NET project and select Rebuild.

 3. Once the build is complete, fire up your FTP client and log in to the appropriate Discount
ASP.NET FTP Server using the credentials you were provided on the Account Info page. You
may find that some folders have already been created in your root.

 4. For FitnessTrackerPlus, these folders aren’t needed so they can be safely deleted.

 5. Upload the FitnessTrackerPlus files.

 6. Navigate to the Release folder that was generated under the ASP.NET Project folder. From
this folder, you need to upload all the files/folders in the directory with the exception of the obj
directory, if there is one.

 7. Once the FTP transfer is completed, you can go back to the Discount ASP.NET Control Panel
page and turn the IIS site instance back on. If everything was completed correctly, navigating
to the site should bring up the main FitnessTrackerPlus.aspx page.

There is one more crucial step that needs to be followed before declaring FitnessTrackerPlus avail-
able to the world and that is to set up the SQL Server database.

Currently, the database resides in a file called FitnessTrackerPlus.mdf. This file was uploaded to the
App_Data directory. Now the current connection string is set up in a way that allows your local
instance of SQL Server Express 2008 to attach the file and run. This won’t work for your deployed
solution. Instead of attaching the MDF file in the connection string, you will need to make use of
the SQL Server instance that has been provided to you as part of your Discount ASP.NET account.
Follow these steps:

 1. You can find your SQL Server account information along with several other great database tools
under the Database Management link on the Control Panel page. Because you added the SQL
Server 2008 Add-On to your account, you can find the database connection information by then
clicking the MS SQL 2008 link. After the page is loaded, you will be presented with a few tabs; the
main display should show you the SQL Server Name, Database Name, Database Space, Database
Login, SQL Usage Meter, and even the appropriate Connection String to use in the web.config file.

 2. Copy this connection string and replace the following connection string line in the web.config
file with the one from your Discount ASP.NET account:

<connectionStrings>
 <add name=”FitnessTrackerPlusConnectionString”
connectionString=”Data
Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory
|\FitnessTrackerPlus.mdf;Integrated
Security=True;User Instance=True”
providerName=”System.Data.SqlClient” />
</connectionStrings>

Code snippet web.config

534045c12.indd 485 3/14/10 2:49:00 PM

486 ❘ ChaPter 12 Let’s Go Live

 3. After making this change, don’t forget to rebuild and upload the new version of the web.config
file to the FTP site.

 4. Once the web.config file is updated with the correct connection string information, attach the
FitnessTrackerPlus.mdf file to the Discount ASP.NET SQL Server instance. This task is made
trivial thanks to the database management tools that Discount ASP.NET provides. On the same
page that contained the connection string information you’ll find a tab called SQL Tool Suite, if
you navigate to this tab, you’ll see a whole suite of SQL Server database tools. Figures 12-8 and
12-9 show the full list of tools including a backup utility, database restoration tool, attach data
file, and a shrink database tool.

 5. You’ll make use of the Attach Data File tool in order to get the FitnessTrackerPlus database
working. Click the Browse Web Server for MDF button and navigate to the App_Data folder
where the FitnessTrackerPlus.mdf file is located. Select the file and then click the Attach
MDF File button. Once the operation is complete the database will be available and your
FitnessTrackerPlus application deployment is complete.

Figure 12-8

534045c12.indd 486 3/14/10 2:49:00 PM

Summary ❘ 487

Figure 12-9

That’s all there is to getting the database working. You’ll find that many of the other database tools
offered at Discount ASP.NET are invaluable as you work on maintaining the site, especially the SQL
Backup utility.

Well, that’s it—FitnessTrackerPlus is deployed and ready to go. The only thing missing now is users, so
the next step that you need to work on is getting the word out to start attracting new users to the site.

summary

That’s it! FitnessTrackerPlus is complete and deployed. In this chapter, you have completed work on
the supplemental pages, implemented a password reset mechanism, created a working contact page,
and selected a shared hosting provider for deployment of the application. It’s been a long journey but I
hope you feel more comfortable about making use of Silverlight 4 and WCF RIA Services in your own
applications. As with any application, there is always room for improvement and FitnessTrackerPlus
is no exception. There is no doubt that there are other areas of the application that could definitely be
improved upon in the next release—reporting, offline availability, and localization to name a few. The
development of FitnessTrackerPlus version 2 will no doubt be exciting and filled with new challenges.

I hope you have been made fully aware of the benefits of Silverlight technology in Web-based appli-
cations and you will make use of some of the techniques shown in this book to further enhance your
own applications. Who knows? With any luck, your Silverlight application will become the next
MySpace, Facebook, or Twitter.

534045c12.indd 487 3/14/10 2:49:00 PM

534045c12.indd 488 3/14/10 2:49:00 PM

489

Index

A

About Me text, 352, 354
About page, 464–465
Access, 78
Accordion control, 154
Accordion event handler, 164
AccordionItem control, 160
AccordionSelectionChanged event

handler, 165
account settings, 143, 158, 172

business logic, 157, 177–178
data access, 156, 175–177
database, 156, 175
user interface, 156, 172–175

code behind, 157, 179–180
Activator class, 288, 307
AddUsersToRoles method, 128
ADO.NET, data services, 60–70

HTTP verbs and, 64
AdSense (Google), 424–426
advertisements

displaying, 433–436
DIV elements, 433

advertising-based revenue generation, 424
Google AdSense, 424–426
pay-per-click, 424

AJAX, navigation and, 142
Ajax Control Toolkit, 349

downloading, 355
Alignment property, 320
Amazon

cloud computing, 482
S3 storage service, 482

announcements, site announcements, 142
Announcements class, 214
AnnouncementService, 189
App_Data directory, 485
Area chart, 322
ASMX web services, 53–56
ASP.NET

Authentication service, 95
Discount ASP.NET, 468, 480–487
Membership service, 95, 471

passwords, 96
username, 95

Profile service, 471
username, 95

Role service, 95, 471
username, 95

ATOM feed form, 65
attributes, RIA services validation

attributes, 117
authentication, WCF RIA Services, 95, 116
Authentication service, 88
AuthenticationService, 180, 352, 353, 396
AuthenticationService class, 114

534045bindex.indd 489 3/13/10 4:53:30 PM

490

Auto Return – Captcha control

Auto Return (PayPal), 449–450
auto-suggest search box, 196, 197
AutoCompleteBox control

exercise log, 234
food log, 196, 200, 201, 203

properties, 204–205
AutoComplete_Populating event handler, 219
AutoGenerateFields property, 111
AutoLoad, 250
Azure, 482

B

Back feature, Frame control, 91
balancing load, 482
banner, 91

XAML code, copying, 145
Bar chart, 323
baseAddressPrefixFilters, 60
BasedOn property, 206
BasedOn styling, 469
BasicDayButtonStyle class, 206
binding, element to element, 30–32
Binding property, 321
BitmapImage object, 304
Blend, 326
BMI (Body Mass Index), 281

calculating for measurement log, 307–311
BodyMassIndexCalculator control, 308
BodyMassIndexCalculator object, 288

data entry screen, 289
BodyMassIndexParams, 309
bookmarking pages, 466–467
Bubble chart, 324
business logic, 91–92

account settings, 157, 177–178
dashboard, 138, 170

exercise log, 240
ExerciseService class, 257–260

Exercise Summary, 318, 335–336
food log, 199, 214–217
Food Summary, 316, 329–331
Home View, 108
login control, 97–98, 136–137
Main Page, 104
measurement log, 285–286, 295–300
Measurement Summary, 319, 340–343
MySpace application, 396, 406–411
navigation menu, 155, 163
public fitness journal, 353, 356–357,

361–364, 373–375
site announcements, 156, 189
themes, 184
user home page, 153–154, 167
user registration, 114
user registration system, 95

business logic layer, 52

C

C#/VB.NET programming, support, 1
CalculateComplete event, 288
calculator controls, measurement log,

287–289
BMI (Body Mass Index), 307–311
dynamic creation, 288

calendar, GlobalCalendar control, 193
Calendar control, 197, 354
Canvas control, 211
CAPTCHA, 466

image, 468
displaying, 471–472

implementations, 473
Captcha control, 468

534045bindex.indd 490 3/13/10 4:53:30 PM

491

cardio exercises – controls

cardio exercises, 233
cascading ComboBox control, 236
CellEditingTemplate column, 220, 273, 291
charts, Silverlight Toolkit, 322–324
class mappings, LINQ to SQL, renaming, 95
classes
Activator, 288, 307
Announcements, 214
AuthenticationService, 114
BasicDayButtonStyle, 206
CustomFood, 231
DailyExerciseSummary, 335
DailyFoodSummary, 329–330
data access, LINQ to SQL, 113–114
DataContext, 63
DataService, 62
DomainService, 114, 199
Entity, 373
ExerciseService, 240, 257–260, 260
FoodLogGrid, 218
FoodService, 316
GetDailyMeasurementSummary, 340
Globals, 59–60
HtmlPage, 382
InvalidLogDateStyle, 206
LINQ to SQL, data access, 95
MeasurementService, 285, 341
MembershipProvider, 115, 122
ProgressBarVisibilityConverter, 301
PublicJournalSettings, 373
SmtpClient, 471
ThemeSelector, 39
User, 410–411
UserBase, 95
UserInformationService, 471
UserInformationValidation, 178
Users, 214
UserService, 95
ValidLogDateStyle, 206

WebClient, 303
WritableBitmap, 471–472

Click handlers, 164
cloud computing, 482

Azure, 482
Google App Engine platform, 482

CodePlex, source code, 468
Column chart, 322
ComboBox control

cascading, 236
exercise log, 234
measurement log, 282

CommentArea control, 376
comment_area DIV, 378
comment_editor DIV, 378
commenting area, creating, 368–369
commenting system, 350

DIV element, 369
form, 355

comments, 349
displaying, 355
form, 355
loading, 357

confirm password field, 175
confirm_password property, 175, 177
Contact page, 463–466, 468–473
ContentPlaceHolder control, 144
context menu, right-click, 224–227
control, OpenFileDialog, 302
Control Toolkit, 467–469

new controls, 193
controls
Accordion, 154
AccordionItem, 160
AutoCompleteBox, 196, 200, 201, 203
BodyMassIndexCalculator, 308
Calendar, 197, 354
Canvas, 211
Captcha, 468
ComboBox, 282

534045bindex.indd 491 3/13/10 4:53:30 PM

492

controls – dashboard

CommentArea, 376
ContentPlaceHolder, 144
Control Toolkit, 468
CustomFood, 228
data controls, 24

DataForm, 24, 26–27
DataGrid, 24
DataPager, 24, 28–30

DataForm, 201, 467
DataGrid, 197–198, 200, 201, 282
DataPager, 467
DockPanel, 366
DomainDataSource, 233
Editor, 355, 370–371
ExerciseSummary, 314, 317, 336–337
FoodSummary, 315
Frame, 91, 145
GlobalCalendar, 193, 197, 200, 201, 205,

280, 282
Grid, 166, 317
HyperlinkButton, 151, 160
ListBox, 187
MySpace Silverlight SDK, 389
MySpacePersonRequest, 390
NavigationMenu, 160, 163, 166, 358
Page, 91, 139, 145, 366
PasswordBox, 111, 172
ProgressBar, 200, 201–202, 263–264, 301
ResetPassword, 476
ScrollViewer, 185, 376
SiteAnnouncements, 155
StackPanel, 166
summary controls, dashboard page, 314
TextBox, 121
TimePicker, 273
user interface, 24
WebBrowser, 349, 355

counting calories user story, 195–196
CreateComment method, 383
CreatedFood property, 231

CreateExerciseLogEntry method, 266
CreateMeasurementLogEntry method,

300, 301
CreateUser method, 115, 122, 124
credit card processing, in-house, 427
CRUD methods, auto-generated, 114
custom foods in food log, 227–232
CustomExercise, 267
CustomFood class, 231
CustomFood control, 228
CustomFoodCreated event, 230

d

DailyExerciseSummary class, 335
DailyExerciseSummary object, 317
DailyFoodSummary class, 329–330
DailyMeasurementSummary object, 318, 339
dashboard, 158, 169, 314

business logic, 138, 170
data access, 138, 170
database, 138, 170
design, 471
Exercise Summary

business logic, 318, 335–336
data access, 317, 335
database, 317, 335
user interface, 317, 333–335
user interface code behind, 318,

336–338
fitness dashboard, 81
fitness summaries, 191
Food Summary, 315, 320

business logic, 316, 329–331
data access, 316, 328
database, 316, 328
user interface, 315–316, 320–322,

326–328
user interface code behind, 316,

331–333

controls (continued)

534045bindex.indd 492 3/13/10 4:53:31 PM

493

data access – database

functionality, 314
implementation, 471
locking down, 90
Measurement Summary

business logic, 319, 340–343
data access, 318, 340
database, 318, 340
home page screenshot, 347
printing support, 345–346
user interface, 318, 338–340
user interface code behind, 319,

343–347
MeasurementSummary control, 318
printing support, 319
summary controls, 314
user home page, 143
user interface, 138, 169–170

code behind logic, 138–139, 170–171
visual feedback, 472

data access, 91
account settings, 156, 175–177
classes, LINQ to SQL, 113–114
dashboard, 138, 170
exercise log, 240, 256–257
Exercise Summary, 317, 335
food log, 199, 214
Food Summary, 316
Food summary, 328
Home View, 108
login control, 97, 136
Main Page, 104
measurement log, 285, 294
Measurement Summary, 318, 340
MySpace application, 396, 405–406
navigation menu, 155, 163
public fitness journal, 353, 356, 361,

372–373
site announcements, 155–156, 189
themes, 184

user home page, 153, 167
user registration, 113–114
user registration system, 95

data access layer, 41–42
data controls, 24
DataForm, 24, 26–27
DataGrid, 24
DataPager, 24, 28–30

data entry, 193
BodyMassIndexCalculator object, 289
food log page, 194
interfaces, 193
WCF RIA Services, 200

data entry page, 472
data migration, GUID data types, 93
data storage layer, 76–77
database, 91

account settings, 156, 175
auto-suggest entries, 197
dashboard, 138, 170
exercise log, 238–239, 255–256
Exercise Summary, 317, 335
food log, 198–199, 214
Food Summary, 316
Food summary, 328
Home View, 108
login control, 97, 136
Main Page, 104
measurement log, 283–284, 293–294
Measurement Summary, 318, 340
MySpace application, 395–396, 405
navigation menu, 155, 163
public fitness journal, 352–353, 355–356,

361, 372
site announcements, 155–156, 189
themes, 184
user home page, 153, 167
user registration, 112–113
user registration system, 92–93

534045bindex.indd 493 3/13/10 4:53:31 PM

494

DataContext class – event handlers

DataContext class, 63
DataForm control, 24, 26–27, 109, 201, 467

metadata, 121
DataFormTemplateField, 111
DataGrid control, 24, 197–198, 200, 201

data presentation and, 25–26
enhancements, 220–223
entry deletion, 200
exercise types, 244–248
ItemSource property, 241
measurment log, 282
multiple, 241

DataGridCheckBox style, 211
DataGridTextBlockCentered style, 211
DataPager control, 24, 28–30, 467
DataService class, 62
DataServiceQuery, 68
DeleteExerciseLogEntry method, 240
DependentValuePath property, 325
deploying MySpace application, 416–420
design

load balancing, 482
Logical N-Tier, 470
logical N-TIer, presentation layer, 483
logical N-Tier, 482–483

DataForm control, 26–27
DataGrid control, 25–26
DataPager control, 28–30

on-the-fly, 480
Physical N-Tier, 470
physical N-Tier design, 481
stopping prematurely, 480

developer API, 468
directory browsing, disabling, 482
Discount ASP.NET, 468, 480–487
DisplayName property, 413
DIV elements, 355

advertisements, 433
comment_area, 378

comment_editor, 378
hidden/visible, 357
paypal_area, 444

DLL, themes, 157
DockPanel container structure, 242–243
DockPanel control, 366
DomainDataSource control, 233

exercise log, 248–254
DomainException, 115
DomainService class, 114, 199, 215, 240
DomainService wizard, 199, 285
DropDownOpened event, 219
dynamic styling, 469
dynamic theme selection, 37–41

e

editing, in-place, 200
Editor control, 355, 370–371
element to element binding, 30–32
email_address property, 120
entity access rights, 63
Entity classes, 373
entity classes, Profile, 405–406
Entity Data Model Wizard, 48
Entity Framework, 47–52

LINQ to SQL comparison, 47
entries, deletion, 200, 289
errors, DomainException, 115
event handlers
Accordion, 164
AccordionSelectionChanged, 165
AutoComplete_Populating, 219
HyperlinkButton_Click, 151
NavigationMenuEventArgs, 168
OnNavigatedTo, 378
OpenWriteCompleted, 303
PrintPage, 346
SelectionChanged, 258, 286

534045bindex.indd 494 3/13/10 4:53:31 PM

495

events – feedback

events
CalculateComplete, 288
CustomFoodCreated, 230
DropDownOpened, 219
FragmentNavigation, 151
LayoutUpdated, 223, 376
Loaded, 300, 378
MouseRightButtonDown, 226
MouseRightButtonUp, 226
Navigated, 106
Navigating, 151
OnNavigatedTo, 217–218
PreparingCellForEdit, 273
PropertyChanged, 413
SelectionChanged, 163, 241
SignupComplete, 106, 456

exercise log page, 82
activites grid, 247
AutoCompleteBox control, 234
business logic, 240

ExerciseService class, 257–260
cardio, 233
ComboBox control, 234
custom exercises, 267–272
data access, 240, 256–257
database, 238–239, 255–256
design, 471–472
entries

accessing previous, 278
deleting, 273–275, 276–278
new, 264–267
retrieving, 260–262
updating, 273–275

exercise_logs table, 239
exercises, retrieving, 258
exercises table, 238
filtering exercises, 234
grouping exercises, 234
implementation, 471–472

muscle_groups, 238
ProgressBar control, 263–264
requirements, 235–236
user interface, 236–237

code behind logic, 240–241, 262–278
control layout, 242–243
DataGrids for exercise types, 244–248
DomainDataSource control, 248–254

user stories, 235
VisualTreeHelper.GetParent method,

275–276
weight training, 233

DataGrid, 245
Exercise property, 260
Exercise service, 406
Exercise Summary

business logic, 318, 335–336
DailyExerciseSummary object, 317
data access, 317, 335
database, 317, 335
user interface, 317, 333–335

code behind, 318, 336–338
ExerciseContext instance, 251
exercises table, 238
ExerciseService, editing, 335
ExerciseService class, 240, 257–260, 260
ExerciseSummary, 334–335
ExerciseSummary control, 314, 317, 336–337
ExerciseType property, 260
exercise_types table, 238
Expression Blend Trial, 473
expressions, lambda expressions, 300
ExternalCallersFromCrossDomain tag, 416

F

Facebook, 350, 388, 462
growth, 389

feedback, 465–466

534045bindex.indd 495 3/13/10 4:53:31 PM

496

file names – GetDailyExerciseSummary method

file names, changing, 303
Filezilla, 482
FilterDescriptionCollection, 253
FilterMode property, 203
FireNavigationEvent method, 165
fitness summaries, 158, 191
FitnessTrackerPlus, 462

application design, 78–83
design

browser history, 465
dashboard, 463–464
desktop application feel, 466
exercise log, 464
journal page, 465
measurements log, 464
nutrition log, 464
revenue generation, 465–466
scalability, 463
social networking, 465
user interface, 463

exercise log, 82
fitness dashboard, 81
food log, 81–82
landing page, 79–81
measurement log, 82–83
MySpace application (See MySpace

application)
MySpace integration, 391–392
public fitness journal, 83
requirements, 89
revenue generation, 473
URL, 466

Food EntityList, 219
food log page, 81–82, 196

business logic, 199, 214–217
custom foods, 227–232
data access, 199, 214
data entry, 194
database, 198–199, 214

design, 471
entries, updating, 197
implementation, 471
search box, 194
user interface, 196–198, 201–213

code behind logic, 199–200, 217–232
screen layout, 201–202

Food object, 215
Food service, 406
Food Summary, 315, 320

business logic, 316, 329–331
data access, 316, 328
database, 316, 328
user interface, 315–316, 320–322, 326–328

code behind, 316, 331–333
FoodContext object, 218
FoodLogEntry object, 230, 330
FoodLogGrid, printing, 346
FoodLogGrid class, 218
food_logs table, schema, 199
foods table, schema, 198
FoodService class, 215, 316
FoodSummary control, 315
footer, 91

XAML code, copying, 145
Forgot Password button, 467
Forward feature, Frame control, 91
FragmentNavigation event, 151
Frame control, 91, 145
Navigated event, 106
nested, 146

FTP client, 482

G

GetAllExercises method, 54
GetAllExercisesAsync method, 54
GetDailyExerciseSummary method, 318, 335

534045bindex.indd 496 3/13/10 4:53:31 PM

497

GetDailyFoodSummary method – HyperlinkButton_Click event handler

GetDailyFoodSummary method, 316
GetDailyFoodSummaryDataQuery, 332
GetDailyMeasurementSummary class, 340
GetDailyMeasurementSummary

method, 341
GetExerciseLogEntries method,

240, 250
GetExercises method, 73, 74
GetExercisesByMuscleGroup method, 240
GetExercisesByType method, 240
GetExerciseTypes method, 240
GetMeasurementImages query method, 300
GetMeasurementLogEntries method, 296
GetMeasurements method, 295, 296
GetMuscleGroups method, 240
GetProfile method, 130
GetPropertyValues method, 131, 361
GetPublicJournalSettings method, 375
GetRolesForUser method, 128
GetUser method, 115, 122
GetUserID method, 413
GetUserNameByEmail method, 122
GetValue method, 288
global variables, 159
GlobalCalendar control, 193, 197, 200, 201,

205, 280, 282
date background, 212
event handling logic, 227
food log page, 194

Globals class, 59–60
Globals.SelectedDate variable, 286
Go-Live license, 468
Google, Google App Engine

platform, 482
Google AdSense, 424–426

Ad units, 431
Link units, 431
sign-up, 429
terms of service, 425

Grid control, 166, 317
grouping, DomainDataSource control, 233
GUID data types, data migration and, 93

H

HashPasswordForStoringInConfigFile
method, 126–127

HasMorePages variable, 346
History feature, Frame control, 91
home page, 90–92. See also user home page

roles, 90
screenshot, 347
user interface, 91

Home View
business logic, 108
data access, 108
database, 108
user interface, 107–108

hosting
shared hosting providers, 468
shared hosting solutions, 300

HTML-based comments, 349, 355
saving to database, 384

HTML DIV tag, 102
HTML editor, 355
HTML (HyperText Markup Language),

encoding raw, 383
HTML version of site, 90
HtmlPage class, 382
HtmlPage.Window.Invoke method, 385
HTTP verbs, ADO.NET data services

and, 64
HttpUtility.Decode method, 383
HttpUtility.Encode method, 383
HyperlinkButton control, 160
Tag property, 151

HyperlinkButton_Click event handler, 151

534045bindex.indd 497 3/13/10 4:53:31 PM

498

IDailySummary interface – logical N-Tier design

I

IDailySummary interface, 331–332, 336, 343
IdSpec attribute, 391, 413
IHttpHandler interface, 298
Image control, 338
images

file types, 286
storage, 284
uploading, measurement log, 282
UserImages directory, 286

IMeasurementCalculator, 288
Implicit Styling, 36–37
implicit styling, 469
in-house credit card processing, 427
in-place editing, 200
IndependentValuePath property, 325
Initialize method, 122
INotifiyPropertyChanged interface, 413
InsertExercise method, 240
InsertExerciseLogEntry method, 240
InsertExerciseMuscleGroups method, 260
interfaces

data entry and, 193
IDailySummary, 331–332, 336, 343
IHttpHandler, 298
IMeasurementCalculator, 288
INotifiyPropertyChanged, 413
IQueryable, 66–67
ISummaryControl, 318
IUpdateable, 66–67

InvalidLogDateStyle class, 206
iPhones, controls, 199
IPN (Instant Payment Notification), 460
IQueryable interface, 66–67
IsIndeterminate property, 202
IsTextCompletionEnabled property, 203
ISummaryControl interface, 318
ItemContainerStyle, 187
IUpdateable interface, 66–67
IValueConverter interface, 188

J

JavaScript
AdSense account, 430–433
OpenSocial, 412

journal, public, 472
JournalComment object, 370
JournalService, 411
JournalSettingsPanel, 360
JSON form, 65

K

keys, GUID style, 93
KeyValuePair object, 325

L

lambda expressions, 300
landing page, 79–81
LayoutUpdated event, 223, 376
legal websites, 467
legalities, 464
Line chart, 323
LINQ to SQL, 42–47

class mappings, renaming, 95
classes, data access, 95
data access classes, 113–114
Entity Framework comparison, 47
expressions, 68
user entities, 113

ListBox control, 187
load balancing, 482
Loaded event, 300, 378
LoadMethod, 218
LoadPublicJournal method, 379, 380
LoadThemeList method, 40
logical N-Tier design, 470, 482–483
DataForm control, 26–27
DataGrid control, 25–26

534045bindex.indd 498 3/13/10 4:53:32 PM

499

logical tier – metadata

DataPager control, 28–30
presentation layer, 483

logical tier, 84–86
login, 90
login control

business logic, 97–98, 136–137
data access, 97, 136
database, 97, 136
user interface, 97, 134–135

code behind, 136–138
Login control, Reset Password link, 474
LoginSuccess property, 137

M

mail server, localhost, 471
Main Page

business logic, 104
data access, 104
database, 104
Silverlight not installed, 102–104
user interface, 98–102

Margin property, 320
master pages, 145
MasterPages, 91
measurement log, 82–83, 279

BMI (Body Mass Index), 281
BodyMassIndexCalculator object, 288
business logic, 285–286, 295–300
calculator controls, 287–289

BMI (Body Mass Index),
307–311

dynamic creation, 288
ComboBox control, 282
custom measurements, 286
data access, 285, 294
database, 293–294
DataGrid control, 282

entries
creating, 301
deleting, 289
updating, 287

images
file types, 286
storage, 284
uploading, 282

IMeasurementCalculator, 288
units of measure, 283
user interface, 282, 289–293

code behind logic, 286–287, 300–307
user stories, 280–281

Measurement service, 406
Measurement Summary, 318

business logic, 319, 340–343
data access, 318, 340
database, 318, 340
home page screenshot, 347
printing support, 345–346
user interface, 318, 338–340

code behind, 319, 343–347
measurement values, 341
MeasurementDataContext, 295
MeasurementService class, 285, 341
Query method, 286

MeasurementsService, 295
Membership provider, 122–127
Membership service, 88, 471
MembershipProvider class, 115, 122

properties, overriden, 122–123
user registration settings, 122

MembershipProvider method, 374
menus, right-click context menu, 224–227
MergedDictionaries, 185
metadata
DataForm control, 121
user information service, 117–122

534045bindex.indd 499 3/13/10 4:53:32 PM

500

methods – muscle_groups table

methods
AddUsersToRoles, 128
CreateComment, 383
CreateExerciseLogEntry, 266
CreateMeasurementLogEntry, 300, 301
CreateUser, 115, 122, 124
DeleteExerciseLogEntry, 240
ExerciseService class, 240
FireNavigationEvent, 165
GetAllExercises, 54
GetAllExercisesAsync, 54
GetDailyExerciseSummary, 318, 335
GetDailyFoodSummary, 316
GetDailyMeasurementSummary, 341
GetExerciseLogEntries, 240, 250
GetExercises, 73, 74
GetExercisesByMuscleGroup, 240
GetExercisesByType, 240
GetExerciseTypes, 240
GetMeasurementImages, 300
GetMeasurementLogEntries, 296
GetMeasurements, 295, 296
GetMuscleGroups, 240
GetProfile, 130
GetPropertyValues, 131, 361
GetPublicJournalSettings, 375
GetRolesForUser, 128
GetUser, 115, 122
GetUserID, 413
GetUserNameByEmail, 122
GetValue, 288
HashPasswordForStoringInConfigFile,

126–127
HtmlPage.Window.Invoke, 385
HttpUtility.Decode, 383
HttpUtility.Encode, 383
Initialize, 122
InsertExercise, 240

InsertExerciseLogEntry, 240
InsertExerciseMuscleGroups, 260
LoadPublicJournal, 379, 380
LoadThemeList, 40
MembershipProvider, 374
OnValidate method, 44
PositionCommentControls, 377
Print, 346
ProcessRequest, 298
Query, 286
query methods, 74–75
RefreshSummary, 318, 319
ResizeGrid, 222
SelectStyle, 208
SendEmail, 471
SetEntitySetAccessRule, 63, 68
SetPropertyValues, 131, 361
SetStyleAttribute, 377
Take, 74
ToString, 340
TransformToVisual, 378
UpdateExerciseLogEntry, 240
UpdateUser, 179
ValidateConfirmPassword, 178
ValidateFood, 44
ValidatePayPal, 455
ValidateProperty, 120
ValidateUser, 122, 127
VisualTreeHelper.GetParent, 275–276
WCF RIA Services naming conventions, 74

Microsoft Paint, screenshots, 314
MinimumPopulateDelay property, 203
MinimumPrefixLength property, 203
mission statement, 465
monthly fees, 426–428
MouseRightButtonDown event, 226
MouseRightButtonUp event, 226
muscle_groups table (exercise log), 238

534045bindex.indd 500 3/13/10 4:53:32 PM

501

MySpace application – Oracle

MySpace application
business logic, 396, 406–411
data access, 396, 405–406
database, 395–396, 405
deploying, 416–420
developer page, 392
MySpaceApps option, 392
MySpaceID option, 392
OpenSocial, 388

profile properties, 390–391
Post to MySpace option, 392
user interface, 395, 401–405

code behind, 396–397, 412–416
MySpace web site, 350, 387, 462, 472

developer account setup, 397–400
FitnessTrackerPlus integration, 391–392
history of, 388–389
Silverlight SDK, 389–391

controls, 389
Owner, 391
Viewer, 391

MySpacePersonRequest control, 390
IdSpec attribute, 391

MySQL, 78

n

N-Tier
architecture, 481
hardware solution, 481
logical N-Tier design, 482–483

DataForm control, 26–27
DataGrid control, 25–26
DataPager control, 28–30
presentation layer, 483

physical N-Tier design, 481
namespaces, declaration, 324
naming conventions, 303

WCF RIA Services, 74

Navigated event, 106
Navigating event, 151
NavigatingCancelEventArgs object, 106
navigation, AJAX, 142
Navigation Application project template, 475
Navigation Framework, 466–467

code, 476
nested Frame controls, 146
user interface, 152

navigation links, vertical list, 160
navigation menu, 158
Accordion control, 159
business logic, 155, 163
data access, 155, 163
database, 155, 163
user interface, 154

code behind, 160–164
NavigationMenu control, 160, 163, 166, 358
NavigationMenuEventArgs event handler, 168
NavigationService, 109
Navigating event, 151

navigation, user home page, 142
nested controls, Frame, 146
NestedAdditionalContent.xaml, 148
NestedContent.xaml, 148
NotImplementedException, 122

O

on-the-fly design, 480
OnNavigatedTo event, overriding, 217–218
OnNavigatedTo event handler, 378
OnValidate method, overloading, 44
OpenFileDialog control, 302
OpenSocial, 388

JavaScript functionality, 412
profile properties, 390–391

OpenWriteCompleted event handler, 303
Oracle, 78

534045bindex.indd 501 3/13/10 4:53:32 PM

502

overlays – properties

overlays, 355
overloading OnValidate method, 44
Owner (MySpace Silverlight SDK), 391

P

Page control, 145, 366
Page controls, 91, 139
pages, bookmarking, 466–467
PageVisual object, 346
Paint, screenshots, 314
parameters, query methods, 74–75
password reset, 466–467

enabling, 474–480
PasswordBox control, 111, 172
PasswordControl, 111–112
passwords, 90

Forgot Password button, 467
Membership service (ASP.NET), 96

pay-per-click advertising, 424
influencing number of clicks, 425

Payment Data Transfer (PayPal), 451–460
payment processing, field validation, 447–449
PayPal

developer API, 436
field validation before payment processing,

447–449
Sandbox, 437
subscriptions, 427–428

Auto Return, 449–450
canceling, 460
Instant Payment Notification

(IPN), 460
integration with FitnessTrackerPlus,

443–444
integration with user registration,

444–447
Payment Data Transfer, 451–460

Website Payments Pro, 436
Website Payments Standard, 436, 437–443

paypal_area DIV, 444
Physical N-Tier design, 470
physical N-Tier design, 481
physical tier, 84
Pie chart, 323
PlotAreaStyle, 327
PluginNotInstalledTemplate, 91
PositionCommentControls method, 377
Post to MySpace option, 392
PreparingCellForEdit event, 273
presentation layer, 483
Print method, 346
PrintableArea object, 346
PrintDocument object, 346
printing, FoodLogGrid, 346
printing support

dashboard, 319
Measurement Summary, 345–346

PrintPage event handler, 346
privacy policy, 464, 467
ProcessRequest method, 298
Profile entity class, 405–406
Profile properties, 359
Profile service, 88, 471
ProfileProvider, 129–133, 396

user interface code behind, 133–134
profiles, public fitness journal, 352–353
ProgressBar control, 200, 201–202,

263–264, 301
ProgressBarVisibilityConverter class, 301
properties
Alignment, 320
AutoCompleteBox control, 204–205
AutoGenerateFields, 111
BasedOn, 206
Binding, 321
confirm_password, 175, 177
CreatedFood, 231
DependentValuePath, 325
DisplayName, 413
email_address, 120

534045bindex.indd 502 3/13/10 4:53:32 PM

503

PropertyChanged event – SearchFoods operation

Exercise, 260
ExerciseType, 260
FilterMode, 203
IndependentValuePath, 325
IsIndeterminate, 202
IsTextCompletionEnabled, 203
ItemSource, 241
LoginSuccess, 137
Margin, 320
MembershipProvider class, overriden,

122–123
MinimumPopulateDelay, 203
MinimumPrefixLength, 203
Profile, 359
Visibility, 263
Windowless, 368–369

PropertyChanged event, 413
public fitness journal, 83

business logic, 353, 356–357, 361–364,
373–375

data access, 353, 356, 361, 372–373
database, 352–353, 355–356, 361, 372
profiles, 352–353
requirements, 351–352
URL, 356–357
user interface, 352, 354–355, 358–360,

366–372
code behind, 353, 357, 364–365,

375–386
public journal, 472
PublicJournalSettings class, 373

Q

Query method, 286
query methods
GetMeasurementImages, 300
parameters, 74–75

R

records, returned, limiting, 74–76
RefreshSummary method, 318, 319
registration, 90
Reset Password link, 474
ResetPassword control, 476
resetting password, 466–467

enabling, 474–480
ResizeGrid method, 222
ResourceDictionary, 185
REST-based web services, 60–61
returned records, limiting, 74–76
revenue generation, 423–424

advertising-based, 424
FitnessTrackerPlus, 473
monthly fees, 426–428
solution selection, 428–429

RIA services validation attributes, 117
right-click context menu, 224–227
Role service, 471
RoleProvider, 127–129
rows, selecting/deselecting, 223–225
RSS support, turning off, 65–66

S

Sandbox (PayPal), 437
Scatter chart, 323
schema
food_logs table, 199
foods table, 198

screens, designing on-the-fly, 480
screenshots, 314

home page, 347
ScrollViewer control, 101, 185, 376
search boxes, 194

auto-suggest, 196
SearchFoods operation, 219

534045bindex.indd 503 3/13/10 4:53:32 PM

504

SelectedDate variable – System.Windows.Controls.DataVisualization library

SelectedDate variable, 227
selecting/deselecting, rows, 223–225
SelectionChanged event, 163, 241
SelectionChanged event handler, 258, 286
SelectStyle method, 208
SendEmail method, 471
services

Authentication, 88
Membership, 88
Profile, 88

SetEntitySetAccessRule method, 63, 68
SetPropertyValues method, 131, 361
SetStyleAttribute method, 377
shared hosting

providers, 468
solutions, 300

shared information on social networks, 350
SignupComplete event, 106, 456
Silverlight 4

data controls, 467
documentation, downloading, 1
enhancements, 469–470

Silverlight Enabled WCF Service template, 51,
56–60

Silverlight Navigation Framework, 349
Silverlight not installed (Main Page), 102–104
Silverlight SDK, 388, 389–391

controls, 389
Silverlight Toolkit, 32–33

Area chart, 322
Bar chart, 323
Bubble chart, 324
charting with, 322–326
Column chart, 322
Line chart, 323
Pie chart, 323
Scatter chart, 323
TreeMap chart, 324

site announcements, 142, 158, 186
business logic, 156, 189
data access, 155–156, 189
database, 155–156, 189
user interface, 155, 186–188

code behind, 190–191
SiteAnnouncements control, 155
SMTP mail server, 471
SmtpClient class, 471
social networking, 349, 387, 472

Facebook, 350
MySpace, 350, 387
resistant users, 350
shared information, 350

sorting, DomainDataSource control, 233
source code, CodePlex, 468
SQL Server, 77

Advanced Services, 77
editions available, 77

StackPanel control, 166
Border control, 180
Rectangle control, 180

storage, images, 284
styles
DataGridCheckBox, 211
DataGridTextBlockCentered, 211
PlotAreaStyle, 327

summaries, 158, 191
summary controls, dashboard page, 314
SummaryConverter class, TextBlock

controls, 321
supplemental pages, 139

About page, 464–465
Contact page, 465–466, 468–473
mission statement, 465
password reset, 466–467
privacy policy, 467
terms of service, 467

System.Windows.Controls.

DataVisualization library, 322

534045bindex.indd 504 3/13/10 4:53:32 PM

505

T-SQL – user interface

T

T-SQL, 45
syntax support, 77

tables, 93
Tag property, URI creation, 151
Take method, 74
terms of service agreement, 464, 467
TextBlock control, SummaryConverter

class, 321
TextBox controls, 121
themes, 33–36, 157, 158, 180

business logic, 184
data access, 184
database, 184
dynamic selection, 37–41
selectable, 142–143
switching dynamically, 180
user interface, 180–184

code behind, 184–186
ThemeSelector class, 39
tiers

logical, 84–86
physical, 84

TimePicker control, 273
Toolkit, 32–33
ToString method, 340
TransformToVisual method, 378
TreeMap chart, 322, 324

U

units of measure, 283
UpdateExerciseLogEntry method, 240
UpdateUser method, 179
URI mapping, 140
UriMapper, 356

UriMapper, 356

URIs (Uniform Resource Identifiers), creating,
Tag property, 151

URLs (Uniform Resource Locators)
character, 376
public fitness journal, 356–357

use cases. See user stories
User class, 410–411
user entities, LINQ to SQL, 113
user home page, 141

account settings, 143, 158
business logic, 153–154, 167
dashboard, 143, 158
data access, 153, 167
database, 153, 167
fitness summaries, 158
navigation, 142
navigation menu, 158
site announcements, 142, 158
themes, 158
user inter, code behind, 167–168
user interface, 144–153, 160–163, 166–167

user information service
metadata, 117–122
user registration, 114–116

user interface
account settings, 156, 172–175
code behind logic, 89, 91–92

account settings, 157, 179–180
business logic, 98
dashboard, 138–139, 170–171
exercise log, 240–241, 262–278
Exercise Summary, 318, 336–338
food log, 199–200, 217–232
Food Summary, 316, 331–333
Home View, 108–109
login control, 136–138
Main Page, 104–107
measurement log, 286–287, 300–307
Measurement Summary, 319, 343–347

534045bindex.indd 505 3/13/10 4:53:32 PM

506

user interface – ValidateUser method

MySpace application, 396–397,
412–416

navigation menu, 155, 160–164
ProfileProvider, 133–134
public fitness journal, 353, 357,

364–365, 375–386
site announcements, 156, 190–191
themes, 184–186
user home page, 154, 167–168
user registration, 97

controls, 24
dashboard, 138, 169–170
exercise log, 236–237

control layout, 242–243
DataGrids for exercise types, 244–248
DomainDataSource control, 248–254

Exercise Summary, 317, 333–335
food log, 196–198, 201–213

screen layout, 201–202
Food Summary, 315–316, 320–322,

326–328
home page, 91
Home View, 107–108
login control, 97, 134–135
Main Page, 98–102
measurement log, 282, 289–293
Measurement Summary, 318, 338–340
MySpace application, 395, 401–405
Navigation Framework, 152
navigation menu, 154
public fitness journal, 352, 354–355,

366–372
site announcements, 155, 186–188
themes, 180–184
user home page, 144–153, 160–163,

166–167
user registration, 109–112
user registration system, 92
users without Silverlight plug-in, 91

user registration
business logic, 114
data access, 113–114
database, 112–113
PayPal and, 444–447
user information service, 114–116

metadata, 117–122
user interface, 109–112

user registration system
business logic, 95
data access, 95
database, 92–93
information list, 93–95
user interface, 92

user stories, 194
counting calories, 195–196
exercise log, 235
measurement log, 280–281

UserBase class, 95
UserControl type, 288
UserHome.xaml page, 145
UserImages directory, 286
UserInformation object, 111, 153, 172, 373

classes, 153
UserInformationService class, 114, 471
UserInformationValidation class, 178
username, ASP.NET, 95
UserName, grabbing, 153
Users class, 214
UserService class, 95
Utility project, 206

V

ValidateConfirmPassword method, 178
ValidateFood method, 44
ValidatePayPal method, 455
ValidateProperty method, 120
ValidateUser method, 122

overriding, 127

user interface (continued)

534045bindex.indd 506 3/13/10 4:53:33 PM

507

validation – XAML

validation, 177
fields, payment processing, 447–449

ValidationException, 179
ValidLogDateStyle class, 206
variables

global, 159
Globals.SelectedDate, 286
HasMorePages, 346
SelectedDate, 227

Viewer (MySpace Silverlight SDK), 391
Visibility property, 263
Visual Studio, 473
VisualTreeHelper.GetParent method,

275–276

W

WCF RIA Services, 70, 469
ASP.NET

Authentication, 95
Membership, 95
Role, 95

authentication, 95
Authentication service, 116

AuthenticationService, 352
data entry applications, 193, 200
DomainDataSource control, 233
installation, 474
naming conventions, 74
support, 71–74

WCF services, 56–60
WebBrowser control, 349, 355
WebClient class, 303
weight training, 233
Windowless property, 368–369
wizards
DomainService, 199, 285
Entity Data Model Wizard, 48

WritableBitmap class, 471–472

x

XAML, 466
AutoCompleteBox control, 203
themes, 157
user interface code, 473

534045bindex.indd 507 3/13/10 4:53:33 PM

Programmer to ProgrammerTM

Take your library
wherever you go.

Now you can access complete Wrox books online, wherever
you happen to be! Every diagram, description, screen capture,
and code sample is available with your subscription to the
Wrox Reference Library. For answers when and where you need
them, go to wrox.books24x7.com and subscribe today!

• ASP.NET
• C#/C++
• Database
• Java
• Mac
• Microsoft Office
• .NET

• Open Source
• PHP/MySQL
• SQL Server
• Visual Basic
• Web
• XML

Find books on

www.wrox.com

534045badvert.indd 508 3/13/10 4:53:40 PM

Related Wrox Books
ASP.NET MVC 1.0 Test Driven Development Problem – Design – Solution
ISBN: 978-0-470-44762-8
A hands-on guide to creating a complete ASP.NET site using Test Driven Development methods. Shows how ASP.NET MVC is well
suited to TDD and testability. Covers the complete lifecycle including design, testing, deployment, beta releases, refactoring, and
tool and framework selection.

ASP.NET MVC 1.0 Website Programming Problem – Design – Solution
ISBN: 978-0-470-41095-0
A hands-on guide to creating ASP.NET websites using MVC. The book solves some of the most common problems that programmers
run into when creating their first application or when trying to upgrade a current application to this new technology, and demonstrates
each concept while building TheBeerHouse application.

Beginning ASP.NET MVC 1.0
ISBN: 978-0-470-43399-7
This book is a great choice for those who already have ASP.NET knowledge and need to grasp the new concepts of ASP.NET MVC.
Readers will learn about Test-Driven Development and unit testing, the principles of the MVC pattern and its role in TDD, how to
implement the pattern and how to move from traditional ASP.NET webforms to ASP.NET MVC. The book also includes detailed
case studies that can be applied in real world situations.

Professional ASP.NET 3.5 AJAX
ISBN: 978-0-470-39217-1
This book is aimed at experienced ASP.NET developers looking to add AJAX to their applications, and experienced Web developers
who want to move to using ASP.NET and AJAX together.

Professional ASP.NET 4: in C# and VB
ISBN: 978-0-470-50220-4
Written by three highly recognized and regarded ASP.NET experts, this book provides all-encompassing coverage on ASP.NET 4 and
offers a unique approach of featuring examples in both C# and VB, as is the incomparable coverage of core ASP.NET. After a fast-
paced refresher on essentials such as server controls, the book delves into expert coverage of all the latest capabilities of ASP.NET 4.
You’ll learn site navigation, personalization, membership, role management, security, and more.

Professional ASP.NET MVC 1.0
ISBN: 978-0-470-38461-9
This book begins with you working along as Scott Guthrie builds a complete ASP.NET MVC reference application, NerdDinner.com.
He begins by starting a new project and incrementally adding functionality and features. Along the way you’ll cover how to create
a database, build a model layer with business rule validations, implement listing/details data browsing, provide CRUD (Create,
Update, Delete) data form entry support, reuse UI using master pages and partials, secure the application using authentication and
authorization, and implement automated unit testing. From there, the bulk of the rest of the book goes into the ways that MVC is
different from ASP.NET Web Forms, exploring the structure of a standard MVC application and see what you get out of the box. The
last third of the book focuses entirely on advanced techniques and extending the framework.

Silverlight 3 Programmer’s Reference
ISBN: 978-0-470-38540-1
This valuable reference—in full color—explains this release of Silverlight 3 which makes the development of powerful Rich
Interactive Applications (RIAs) achievable for everyone. Packed with examples and written by a highly-seasoned team of
developers and designers, this book guides you through the languages, tools, and techniques that are used to build applications
on the Silverlight 3 platform.

WPF Programmer’s Reference: Windows Presentation Foundation with C# 2010 and .NET 4
ISBN: 978-0-470-47722-9
Written by a leading expert on Microsoft graphics programming, this richly illustrated book provides an introduction to WPF
development and explains fundamental WPF concepts.

Get more out of
wrox.com

Programmer to Programmer™

Interact
Take an active role online by participating in our
P2P forums @ p2p.wrox.com

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and code
to keep you up to date and out of trouble!

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
 We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

Prepared for ANGELLE BOMMARITO/ email0 angelle388@hotmail.com Order number0 61027534 This PDF is for the purchaser’s personal use in accordance with the
Wrox Terms of Service and under US copyright as stated on this book’s copyright page. If you did not purchase this copy/ please visit www.wrox.com to purchase your
own copy.

Nick Lecrenski

Wrox Programmer to Programmer™Join the discussion @ p2p.wrox.com

Silverlight™ 4
Problem - Design - Solution

Lecrenski

 $49.99 USA
 $59.99 CANWeb Development/ASP.NET

wrox.com
Programmer
Forums
Join our Programmer to
Programmer forums to ask
and answer programming
questions about this book,
join discussions on the
hottest topics in the industry,
and connect with fellow
programmers from around
the world.

Code Downloads
Take advantage of free code
samples from this book, as
well as code samples from
hundreds of other books, all
ready to use.

Read More
Find articles, ebooks, sample
chapters and tables of contents
for hundreds of books, and
more reference resources on
programming topics that matter
to you.

Silverlight 4 boasts long-awaited features that conquer writing a
Rich Internet Application. Using new line-of-business features in
this book, you create a web application that’s more responsive than
a traditional ASP.NET web site. Leveraging new features and the
improved Silverlight Toolkit, in each chapter you’ll work through
the problem statement, design analysis, and solution implementation.

Silverlight 4: Problem–Design–Solution:

• Explains how to determine functional requirements for your site

• Details the latest features, such as charting, enhanced data entry
controls, navigation framework, and element to element binding

• Covers the new Silverlight Toolkit featuring themes, charting, and
layout management

• Uses the new .NET RIA Services for your middle tier and data access layers

• Utilizes existing Silverlight ASP.NET membership, authentication,
and profile services

• Illustrates adding social networking to the application using a
Silverlight based MySpace application

• Addresses generating revenue with Pay-Per-Click advertisements
from Google AdSense™ and recurring monthly subscriptions using
the PayPal® developer API

• Shows how to leverage the ASP.NET AJAX Control Toolkit to
incorporate HTML content into a Silverlight application

• Includes step-by-step deployment instructions to host the site
with a real shared hosted provider, Discount ASP.NET

Nick Lecrenski is the founder and lead developer of MyFitnessJournal.com,
a popular fitness tracking web site developed entirely in Silverlight.

Wrox Problem – Design – Solution references give you solid, workable solutions
to real-world development problems. Each chapter is devoted to a different
scenario, analyzing every problem, examining relevant design issues, and
implementing the ideal solution.

Create a fully functional
application using Silverlight 4

Problem
Design

Solution

Silverlight
™ 4

	WroxBooks
	Silverlight 4 Problem - Design - Solution
	About the Author
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: FitnessTrackerPlus: An Overview of the FitnessTrackerPlus Application
	Problem
	Design
	Solution
	Summary

	Chapter 2: Prepare to Be Popular: Providing a Scalable Architecture
	Problem
	Design
	Solution
	Summary

	Chapter 3: Sign Me Up: Using Membership, Authentication, and Profile Services in Silverlight
	Problem
	Design
	Solution
	Summary

	Chapter 4: Welcome Home: Creating the User’s Personal Home Page
	Problem
	Design
	Solution
	Summary

	Chapter 5: One More Slice Can’t Hurt: Creating the Food Log Page
	Problem
	Design
	Solution
	Summary

	Chapter 6: Time to Hit the Gym: Creating the Exercise Log
	Problem
	Design
	Solution
	Summary

	Chapter 7: Am I Working Hard Enough?: Creating the Measurement Log Page
	Problem
	Design
	Solution
	Summary

	Chapter 8: Unfinished Business: Finishing up the Dashboard Page
	Problem
	Design
	Solution
	Summary

	Chapter 9: Sharing Your Success: Creating the Public Fitness Journal
	Problem
	Design
	Solution
	Summary

	Chapter 10: Social Networking: Developing a MySpace Application with Silverlight
	Problem
	Design
	Solution
	Summary

	Chapter 11: This Site Doesn’t Run Itself
	Generating Revenue for FitnessTrackerPlus
	Problem
	Design
	Solution
	Summary

	Chapter 12: Let’s Go Live: Finishing and Deploying FitnessTrackerPlus
	Problem
	Design
	Solution
	Summary

	Index

